

Welcome to Hermes-3 documentation!

Contents

	Introduction

	Getting started
	Installing

	Building with PETSC

	Numerical methods

	Examples
	1D flux-tube

	2D drift-plane

	2D axisymmetric tokamak

	Tests
	1D fluid (MMS)

	Sod shock

	Toro test 1

	Toro test 2

	Toro test 3

	Toro test 4

	Toro test 5

	Tokamak axisymmetric transport
	Finding steady state solutions

	Post-processing

	Code structure
	Simulation state

	Components

	Component scheduler

	Components
	Species density

	Species pressure and temperature

	Species parallel dynamics

	electron_viscosity

	ion_viscosity

	simple_conduction

	Drifts

	Neutral gas models

	Boundary conditions

	Collective quantities

	Atomic and molecular reactions

	Electromagnetic fields

	Numerical methods
	Parallel dynamics

Introduction

Hermes-3 is a plasma simulation model built on BOUT++ [http://boutproject.github.io/], developed mainly for simulating the
edge of magnetically confined plasmas such as tokamaks. The source
code is available on Github [https://github.com/bendudson/hermes-3]. The main aim of this model
is multi-species simulation of fusion reactors, where the plasma will
contain a mixture of deuterium, tritium, helium and other species.

An unusual feature of this model is that it is organised into reusable
components, which can be tested individually and then configured at
run-time. For example a transport simulation with deuterium and tritium ions and
atoms has an input file specifying the components

[hermes]
components = d+, d, t+, t, e, collisions, sheath_boundary, recycling, reactions

The governing equations for each species are specified e.g.

[d+]
type = evolve_density, evolve_momentum, evolve_pressure, anomalous_diffusion
AA = 2 # Atomic mass
charge = 1

and other components have their configuration options e.g. for reactions

[reactions]
type = (
 d + e -> d+ + 2e, # Deuterium ionisation
 t + e -> t+ + 2e, # Tritium ionisation
)

Getting started

Installing

Only CMake is supported for building Hermes-3 and running the tests.
During configuration BOUT++ [https://github.com/boutproject/BOUT-dev/] will be automatically
downloaded as a submodule, together with some dependencies. NetCDF [https://www.unidata.ucar.edu/software/netcdf/] and FFTW [https://www.fftw.org/] are assumed to be installed already. The
SUNDIALS [https://computing.llnl.gov/projects/sundials] library is
strongly recommended for time-dependent simulations, and PETSc [https://petsc.org] is needed to run some of the steady-state
transport solver examples.

If you only want to run time-dependent simulations, then the
recommended way to build Hermes-3 links to the SUNDIALS [https://computing.llnl.gov/projects/sundials] library:

	Configure with cmake, downloading and linking to SUNDIALS:

cmake . -B build -DBOUT_DOWNLOAD_SUNDIALS=ON

	Build, compiling Hermes-3 and all dependencies:

cmake --build build

	Run the unit and integrated tests to check that everything is working:

cd build
ctest

Note that the integrated tests require MPI, and so may not run on the
head nodes of many computing clusters.

The CMake configuration can be customised: See the BOUT++
documentation [https://bout-dev.readthedocs.io/en/latest/user_docs/installing.html#cmake]
for examples of using cmake arguments, or edit the compile options
interactively before building:

ccmake . -B build

If you have already installed BOUT++ and want to use that rather than
configure and build BOUT++ again, set HERMES_BUILD_BOUT to OFF and pass
CMake the path to the BOUT++ build directory e.g.

cmake . -B build -DHERMES_BUILD_BOUT=OFF -DCMAKE_PREFIX_PATH=$HOME/BOUT-dev/build

Note that Hermes-3 currently requires BOUT++ version 5.

Building with PETSC

When building PETSc it is recommended to include hypre. The
following PETSc configure line is a good starting point:

./configure --with-mpi=yes --download-hypre --download-make --with-fortran-bindings=0 --with-debugging=0

To configure Hermes-3 with PETSc, use the -DBOUT_USE_PETSC=ON flag:

cmake . -B build -DBOUT_DOWNLOAD_SUNDIALS=ON -DBOUT_USE_PETSC=ON

If the PETSC_DIR and PETSC_ARCH environment variables have been set,
then CMake should pick them up.

Numerical methods

Advection operators in Hermes-3 use slope limiters, also called flux
limiters [https://en.wikipedia.org/wiki/Flux_limiter] to suppress
spurious numerical oscillations near sharp features, while converging
at 2nd-order in smooth regions. In general there is a trade-off
between suppression of numerical oscillations and dissipation: Too
little dissipation results in oscillations that can cause problems
(e.g. negative densities), while too much dissipation smooths out real
features and requires higher resolution to converge to the same
accuracy. The optimal choice of method is problem-dependent.

The CMake option HERMES_SLOPE_LIMITER sets the choice of slope
limiter. The default method is MinMod, which has been found to
provide a good balance for problems of interest. If less dissipation
is required then this can be changed to MC (for Monotonized
Central); For more dissipation (but 1st-order convergence) change it
to Upwind.

Examples

1D flux-tube

These simulations follow the dynamics of one or more species along the
magnetic field. By putting a source at one end of the domain, and a
sheath at the other, this can be a useful model of plasma dynamics in
the Scrape-Off Layer (SOL) of a tokamak or other magnetised plasma.

1D periodic domain, Te and Ti

A fluid is evolved in 1D, imposing quasineutrality and zero net current.
Both electron and ion pressures are evolved, but there is no exchange
of energy between them, or heat conduction.

[image:]

Fig. 1 Evolution of pressure, starting from a top hat. Input in examples/1D-te-ti.

To run this example:

./hermes-3 -d examples/1D-te-ti

Which takes a few seconds to run on a single core. Then in the
examples/1D-te-ti directory run the analysis script

python3 makeplot.py

That should generate png files and an animated gif if ImageMagick is
installed (the convert program). If an error like
ModuleNotFoundError: No module named 'boutdata' occurs, then
install the boutdata package with python3 -m pip install
boutdata.

The model components are ions (i) and electrons (e), and a component
which uses the force on the electrons to calculate the parallel electric field,
which transfers the force to the ions.

[hermes]
components = i, e, electron_force_balance

The ion density, pressure and momentum equations are evolved:

[i] # Ions
type = evolve_density, evolve_pressure, evolve_momentum

which solves the equations

\[\begin{split}\begin{aligned}
\frac{\partial n_i}{\partial t} =& -\nabla\cdot\left(n_i\mathbf{b}v_{||i}\right) \\
\frac{\partial p_i}{\partial t} =& -\nabla\cdot\left(p_i\mathbf{b}v_{||i}\right) - \frac{2}{3}p_i\nabla\cdot\left(\mathbf{b}v_{||i}\right) \\
\frac{\partial}{\partial t}\left(n_iv_{||i}\right) =& -\nabla\cdot\left(n_iv_{||i} \mathbf{b}v_{||i}\right) - \partial_{||}p_i + E
\end{aligned}\end{split}\]

The electron density is set to the ion density by quasineutrality, the
parallel velocity is set by a zero current condition, and only the
electron pressure is evolved.

[e] # Electrons
type = quasineutral, zero_current, evolve_pressure

which adds the equations:

\[\begin{split}\begin{aligned}
n_e =& n_i \\
\frac{\partial p_e}{\partial t} =& -\nabla\cdot\left(p_e\mathbf{b}v_{||e}\right) - \frac{2}{3}p_e\nabla\cdot\left(\mathbf{b}v_{||e}\right)
\end{aligned}\end{split}\]

The zero_current component sets:

\[\begin{split}\begin{aligned}
E =& -\partial_{||}p_e \\
v_{||e} =& v_{||i}
\end{aligned}\end{split}\]

1D Scrape-off Layer (SOL)

This simulates a similar setup to the SD1D [https://github.com/boutproject/SD1D/] code: A 1D domain, with a
source of heat and particles on one side, and a sheath boundary on the
other. Ions recycle into neutrals, which charge exchange and are
ionised. A difference is that separate ion and electron temperatures
are evolved here.

[image:]

Fig. 2 Evolution of ion and neutral density (blue); ion, electron and
neutral temperature (red), starting from flat profiles.

Due to the short length-scales near the sheath, the grid is packed
close to the target, by setting the grid spacing to be a linear
function of index:

[mesh]
dy = (length / ny) * (1 + (1-dymin)*(1-y/pi))

where dymin is 0.1 here, and sets the smallest grid spacing (at the
target) as a fraction of the average grid spacing.

The components are ion species d+, atoms d, electrons e:

[hermes]
components = (d+, d, e,
 zero_current, sheath_boundary, collisions, recycling, reactions,
 neutral_parallel_diffusion)

The electron velocity is set to the ion by specifying zero_current;
A sheath boundary is included; Collisions are needed to be able to calculate
heat conduction, as well as neutral diffusion rates; Recycling at the targets
provides a source of atoms; neutral_parallel_diffusion simulates cross-field
diffusion in a 1D system.

The sheath boundary is only imposed on the upper Y boundary:

[sheath_boundary]

lower_y = false
upper_y = true

The reactions component is a group, which lists the reactions included:

[reactions]
type = (
 d + e -> d+ + 2e, # Deuterium ionisation
 d + d+ -> d+ + d, # Charge exchange
)

To run this example:

nice -n 10 ./hermes-3 -d examples/1D-recycling

This should take 5-10 minutes to run. There is a makeplots.py script in the
examples/1D-recycling directory which will generate plots and a gif animation
(if ImageMagick [https://imagemagick.org/index.php] is installed).

2D drift-plane

Simulations where the dynamics along the magnetic field is not
included, or only included in a parameterised way as sources or
sinks. These are useful for the study of the basic physics of plasma
“blobs” / filaments, and tokamak edge turbulence.

Blob2d

A seeded plasma filament in 2D. This version is isothermal and cold ion,
so only the electron density and vorticity are evolved. A sheath-connected
closure is used for the parallel current.

[image:]

Fig. 3 Electron density Ne at three times, showing propagation to the right

The model components are

[hermes]
components = e, vorticity, sheath_closure

The electron component consists of two types:

[e] # Electrons
type = evolve_density, isothermal

The evolve_density component type evolves the electron density Ne. This component
has several options, which are set in the same section e.g.

poloidal_flows = false # Y flows due to ExB

and so solves the equation:

\[\begin{aligned}
\frac{\partial n_e}{\partial t} =& - \nabla\cdot\left(n_e\mathbf{v}_{E\times B}\right) + \nabla\cdot{\frac{1}{e}\mathbf{j}_{sh}}
\end{aligned}\]

The isothermal component type sets the temperature to be a constant, and using
the density then sets the pressure. The constant temperature is also
set in this [e] section:

temperature = 5 # Temperature in eV

so that the equation solved is

\[\begin{aligned}
p_e =& e n_e T_e
\end{aligned}\]

where \(T_e\) is the fixed electron temperature (5eV).

The vorticity component uses the pressure to calculate the diamagnetic current,
so must come after the e component. This component then calculates the potential.
Options to control the vorticity component are set in the [vorticity] section.

\[\begin{split}\begin{aligned}
\frac{\partial \omega}{\partial t} =& - \nabla\cdot\left(\omega\mathbf{v}_{E\times B}\right) + \nabla\left(p_e\nabla\times\frac{\mathbf{b}}{B}\right) + \nabla\cdot\mathbf{j}_{sh} \\
\nabla\cdot\left(\frac{1}{B^2}\nabla_\perp\phi\right) = \omega
\end{aligned}\end{split}\]

The sheath_closure component uses the potential, so must come after vorticity.
Options are also set as

[sheath_closure]
connection_length = 10 # meters

This adds the equation

\[\begin{aligned}
\nabla\cdot{\mathbf{j}_{sh}} = \frac{n_e\phi}{L_{||}}
\end{aligned}\]

where \(L_{||}\) is the connection length.

Blob2D-Te-Ti

A seeded plasma filament in 2D. This version evolves both electron and
ion temperatures. A sheath-connected closure is used for the parallel
current.

[image:]

Fig. 4 Electron density Ne at three times, showing propagation to the right and downwards

The model components are

[hermes]
components = e, h+, vorticity, sheath_closure

The electron component evolves density (saved as Ne) and pressure
(Pe), and from these the temperature is calculated.

[e]
type = evolve_density, evolve_pressure

The ion component sets the ion density from the electron density, by
using the quasineutrality of the plasma; the ion pressure (Ph+) is evolved.

[h+]
type = quasineutral, evolve_pressure

The equations this solves are similar to the previous Blob2d case, except
now there are pressure equations for both ions and electrons:

\[\begin{split}\begin{aligned}
\frac{\partial n_e}{\partial t} =& - \nabla\cdot\left(n_e\mathbf{v}_{E\times B}\right) + \nabla\cdot{\frac{1}{e}\mathbf{j}_{sh}} \\
\frac{\partial p_e}{\partial t} =& - \nabla\cdot\left(p_e\mathbf{v}_{E\times B}\right) - \gamma_e p_e c_s \\
n_{h+} =& n_e \\
\frac{\partial p_{h+}}{\partial t} =& - \nabla\cdot\left(p_{h+}\mathbf{v}_{E\times B}\right) \\
\frac{\partial \omega}{\partial t} =& - \nabla\cdot\left(\omega\mathbf{v}_{E\times B}\right) + \nabla\left[\left(p_e + p_{h+}\right)\nabla\times\frac{\mathbf{b}}{B}\right] + \nabla\cdot\mathbf{j}_{sh} \\
\nabla\cdot\left[\frac{1}{B^2}\nabla_\perp\left(\phi + p_{h+}\right)\right] =& \omega \\
\nabla\cdot{\mathbf{j}_{sh}} =& \frac{n_e\phi}{L_{||}}
\end{aligned}\end{split}\]

2D-drift-plane-turbulence-te-ti

A 2D turbulence simulation, similar to the Blob2D-Te-Ti case, but with
extra source and sink terms, so that a statistical steady state of
source-driven turbulence can be reached.

The model components are

[hermes]
components = e, h+, vorticity, sheath_closure

The electron component evolves density (saved as Ne) and pressure
(Pe), and from these the temperature is calculated.

[e]
type = evolve_density, evolve_pressure

The ion component sets the ion density from the electron density, by
using the quasineutrality of the plasma; the ion pressure (Ph+) is evolved.

[h+]
type = quasineutral, evolve_pressure

The sheath closure now specifies that additional sink terms should be added

[sheath_closure]
connection_length = 50 # meters
potential_offset = 0.0 # Potential at which sheath current is zero
sinks = true

and radially localised sources are added in the [Ne], [Pe], and [Ph+]
sections.

The equations this solves are the same as the previous
Blob2D-Te-Ti case, except wih extra source and sink terms. In
SI units (except temperatures in eV) the equations are:

\[\begin{split}\begin{aligned}
p_\mathrm{total} =& \sum_a e n_a T_a \\
\rho_\mathrm{total} =& \sum_a A_a m_p n_a \\
c_s =& \sqrt{\frac{p_\mathrm{total}}{\rho_\mathrm{total}}} \\
\frac{\partial n_e}{\partial t} =& - \nabla\cdot\left(n_e\mathbf{v}_{E\times B}\right) + \nabla\cdot{\frac{1}{e}\mathbf{j}_{sh}} - \frac{n_e c_s}{L_{||}} + S_n \\
\frac{\partial p_e}{\partial t} =& - \nabla\cdot\left(p_e\mathbf{v}_{E\times B}\right) - \frac{\gamma_e p_e c_s}{L_{||}} + S_{p_e} \\
n_{h+} =& n_e \\
\frac{\partial p_{h+}}{\partial t} =& - \nabla\cdot\left(p_{h+}\mathbf{v}_{E\times B}\right) - \frac{\gamma_i p_{h+} c_s}{L_{||}} + S_{p_{h+}} \\
\frac{\partial \omega}{\partial t} =& - \nabla\cdot\left(\omega\mathbf{v}_{E\times B}\right) + \nabla\cdot\left[\left(p_e + p_{h+}\right)\nabla\times\frac{\mathbf{b}}{B}\right] + \nabla\cdot\mathbf{j}_{sh} \\
\nabla\cdot\left[\frac{\overline{A}m_p}{B^2}\left(\overline{n}\nabla_\perp\phi + \nabla_\perp p_{h+}\right)\right] =& \omega \\
\nabla\cdot{\mathbf{j}_{sh}} =& \frac{e n_e \overline{c_s} \phi}{\overline{T} L_{||}} \\
\mathbf{v}_{E\times B} =& \frac{\mathbf{B}\times\nabla\phi}{B^2}
\end{aligned}\end{split}\]

Where \(\overline{T}\) and \(\overline{n}\) are the reference
temperature (units of eV) and density (in units of \(m^{-3}\))
used for normalisation. \(\overline{c_s} = \sqrt{e\overline{T} /
m_p}\) is the reference sound speed, where \(m_p\) is the proton
mass. The mean ion atomic mass \(\overline{A}\) is set to 1 here.

These reference values enter into the sheath current
\(\mathbf{j}_{sh}\) because that is a simplified, linearised form
of the full expression. Likewise the vorticity (\(\omega\))
equation used the Boussinesq approximation to simplify the
polarisation current term, leading to constant reference values being
used.

The sheath heat transmission coefficients default to \(\gamma_e = 6.5\) and
\(\gamma_i = 2.0\) (\(\gamma_i\) as suggested in Stangeby’s textbook
between equations (2.92) and (2.93)). Note the sinks in may not be correct or
the best choices, especially for cases with multiple ion species; they were
chosen as being simple to implement by John Omotani in May 2022.

2D axisymmetric tokamak

These are transport simulations, where the cross-field transport is given
by diffusion, and fluid-like equations are used for the parallel dynamics
(as in the 1D flux tube cases).

The input settings (in BOUT.inp) are set to read the grid from a file tokamak.nc.
This is linked to a default file compass-36x48.grd.nc, a COMPASS-like lower single
null tokamak equilibrium. Due to the way that BOUT++ uses communications between
processors to implement branch cuts, these simulations require a multiple of 6 processors.
You don’t usually need 6 physical cores to run these cases, if MPI over-subscription
is enabled.

heat-transport

In examples/tokamak/heat-transport, this evolves only electron pressure with
a fixed density. It combines cross-field diffusion with parallel heat conduction
and a sheath boundary condition.

To run this simulation with the default inputs requires (at least)
6 processors because it is a single-null tokamak grid.
From the build directory:

cd examples/tokamak
mpirun -np 6 ../../hermes-3 -d heat-transport

That will read the grid from tokamak.nc, which by default links to
the compass-36x48.grd.nc file.

The components of the model are given in heat-transport/BOUT.inp:

[hermes]
components = e, h+, collisions, sheath_boundary_simple

We have two species, electrons and hydrogen ions, and add collisions
between them and a simple sheath boundary condition.

The electrons have the following components to fix the density,
evolve the pressure, and include anomalous cross-field diffusion:

[e]
type = fixed_density, evolve_pressure, anomalous_diffusion

The fixed_density takes these options:

AA = 1/1836
charge = -1
density = 1e18 # Fixed density [m^-3]

so in this simulation the electron density is a uniform and constant value.
If desired, that density can be made a function of space (x and y coordinates).

The evolve_pressure component has thermal conduction enabled, and outputs
extra diagnostics i.e. the temperature Te:

thermal_conduction = true # Spitzer parallel heat conduction
diagnose = true # Output additional diagnostics

There are other options that can be set to modify the behavior,
such as setting kappa_limit_alpha to a value between 0 and 1 to impose
a free-streaming heat flux limit.

Since we’re evolving the electron pressure we should set initial and
boundary conditions on Pe:

[Pe]
function = 1
bndry_core = dirichlet(1.0) # Core boundary high pressure
bndry_all = neumann

That sets the pressure initially uniform, to a normalised value of 1,
and fixes the pressure at the core boundary. Other boundaries are set
to zero-gradient (neumann) so there is no cross-field diffusion of heat out of
the outer (SOL or PF) boundaries. Flow of heat through the sheath is
governed by the sheath_boundary_simple top-level component.

The hydrogen ions need a density and temperature in order to calculate
the collision frequencies. If the ion temperature is fixed to be the same
as the electron temperature then there is no transfer of energy between
ions and electrons:

[h+]
type = quasineutral, set_temperature

The quasineutral component sets the ion density so that there is no net charge
in each cell. In this case that means the hydrogen ion density is set equal to
the electron density. To perform this calculation the component requires that the
ion atomic mass and charge are specified:

AA = 1
charge = 1

The set_temperature component sets the ion temperature to the temperature of another
species. The name of that species is given by the temperature_from option:

temperature_from = e # Set Th+ = Te

The collisions component is described in the manual, and calculates both electron-electron
and electron-ion collisions. These can be disabled if desired, using individual options.
There are also ion-ion, electron-neutral, ion-neutral and neutral-neutral collisions that
are not used here.

The sheath_boundary_simple component is a simplified Bohm-Chodura sheath boundary
condition, that allows the sheath heat transmission coefficient to be specified for
electrons and (where relevant) for ions.

The equations solved by this example are:

\[\begin{split}\begin{aligned}
\frac{3}{2} \frac{\partial P_e}{\partial t} =& \nabla\cdot\left(\kappa_{e||}\mathbf{b}\mathbf{b}\cdot\nabla T_e\right) + \nabla\cdot\left(n_e\chi\nabla_\perp T_e\right) \\
\kappa_{e||} =& 3.16 P_e \tau_e / m_e \\
\tau_e =& 1 / \left(\nu_{ee} + \nu_{ei}\right) \\
\nu_{ee} =& \frac{2 e^4 n_e \ln\Lambda_{ee}}{3\epsilon_0^2 m_e^2 \left(4\pi e T_e / m_e\right)^{3/2}} \\
\ln\Lambda_{ee} =& 30.4 - \frac{1}{2}\ln n_e + \frac{5}{4}\ln T_e - \sqrt{10^{-5} + \left(\ln T_e - 2\right)^2 / 16} \\
\nu_{ei} =& \frac{e^4 n_e \ln\Lambda_{ei}\left(1 + m_e / m_i\right)}{3\epsilon_0^2 m_e^2 \left(2\pi T_e (1/m_e + 1/m_i)\right)^{3/2}} \\
\ln\Lambda_{ei} =& 31 - \frac{1}{2}\ln n_e + \ln T_e
\end{aligned}\end{split}\]

The calculation of the Coulomb logarithms follows the NRL formulary,
and the above expression is used for temperatures above 10eV. See
the collisions manual section for the expressions used in other regimes.

recycling-dthene

The recycling-dthene example includes cross-field diffusion,
parallel flow and heat conduction, collisions between species, sheath
boundary conditions and recycling. It simulates the density, parallel
flow and pressure of the electrons; ion species D+, T+, He+, Ne+; and
neutral species D, T, He, Ne.

[image:]

Fig. 5 Electron pressure, parallel tritium flux, and neon atom density. Simulation
evolves D, T, He, Ne and electron species, including ions and neutral atoms.

The model components are a list of species, and then collective components
which couple multiple species.

[hermes]
components = (d+, d, t+, t, he+, he, ne+, ne, e,
 collisions, sheath_boundary, recycling, reactions)

Note that long lists like this can be split across multiple lines by
using parentheses.

Each ion species has a set of components, to evolve the density,
momentum and pressure. Anomalous diffusion adds diffusion of
particles, momentum and energy. For example deuterium ions contain:

[d+]
type = evolve_density, evolve_momentum, evolve_pressure, anomalous_diffusion
AA = 2
charge = 1

Atomic reactions are specified as a list:

[reactions]
type = (
 d + e -> d+ + 2e, # Deuterium ionisation
 t + e -> t+ + 2e, # Tritium ionisation
 he + e -> he+ + 2e, # Helium ionisation
 he+ + e -> he, # Helium+ recombination
 ne + e -> ne+ + 2e, # Neon ionisation
 ne+ + e -> ne, # Neon+ recombination
)

Tests

The specification of the Toro tests used here is taken from
Walker (2012) [https://doi.org/10.1371/journal.pone.0039999],
originally from Toro’s book Riemann Solvers and Numerical Methods for
Fluid Dynamics [https://link.springer.com/book/10.1007/b79761].

1D fluid (MMS)

tests/integrated/1D-fluid

This convergence test using the Method of Manufactured Solutions (MMS)
solves fluid equations in the pressure form:

\[\begin{split}\begin{aligned}
\frac{\partial n}{\partial t} &= -\nabla\cdot\left(n\mathbf{b}v_{||}\right) \\
\frac{\partial p}{\partial t} &= -\nabla\cdot\left(p\mathbf{b}v_{||}\right) - \frac{2}{3}p\nabla\cdot\left(\mathbf{b}v_{||}\right) \\
\frac{\partial}{\partial t}\left(mnv_{||}\right) &= -\nabla\cdot\left(nv_{||}\mathbf{b}v_{||}\right) - \partial_{||}p
\end{aligned}\end{split}\]

[image:]

Sod shock

tests/integrated/sod-shock and tests/integrated/sod-shock-energy

Euler equations in 1D. Starting from a state with a jump at the middle
of the domain. Left state density, velocity and pressure are
\(\left(\rho_L, u_L, p_L\right) = \left(1.0, 0, 1.0\right)\) Right
state \(\left(\rho_R, u_R, p_R\right) = \left(0.125, 0,
0.1\right)\). The result is shown in figure below at time \(t =
0.2\) for different resolutions in a domain of length 1. The solid
black line is the analytic solution.

[image:]

When evolving pressure the position of the shock front lags the
analytic solution, with the pressure behind the front slightly too
high. This is a known consequence of solving the Euler equations in
non-conservative form. If instead we evolve energy (internal +
kinetic) then the result is much closer to the analytic solution.

[image:]

Toro test 1

tests/integrated/toro-1

Toro’s test problem #1, from Riemann Solvers and Numerical Methods
for Fluid Dynamics [https://link.springer.com/book/10.1007/b79761]
is a variation of Sod’s shock tube problem. The left state is moving
into the right, increasing the speed of the resulting shock. Left
state \(\left(\rho_L, u_L, p_L\right) = \left(1.0, 0.75,
1.0\right)\) Right state \(\left(\rho_R, u_R, p_R\right) =
\left(0.125, 0, 0.1\right)\). The size of the domain is 5, and
the reference result is given at time \(t = 0.8\).

Toro test 2

tests/integrated/toro-2 and tests/integrated/toro-2-energy

Toro’s test problem #2 tests robustness to diverging flows and near-zero densities.
The initial state has constant density and temperature, but a jump in velocity.
Left state \(\left(\rho_L, u_L, p_L\right) = \left(1.0, -2.0, 0.4\right)\) Right
state \(\left(\rho_R, u_R, p_R\right) = \left(1.0, 2.0, 0.4\right)\). The result
in a domain of length 5 at time \(t=0.6\) is shown below.

[image:]

Toro test 3

tests/integrated/toro-3 and tests/integrated/toro-3-energy

Toro’s test problem #3 contains a strong shock close to a contact
discontinuity. Left initial state \(\left(\rho_L, u_L, p_L\right) =
\left(1.0, 0, 1000.0\right)\) Right state \(\left(\rho_R, u_R,
p_R\right) = \left(1.0, 0, 0.01\right)\). Time \(t = 0.04\).

When evolving pressure, the simulation is robust but the density peak
does not converge to the analytic solution (solid black line):

[image:]

However by evolving energy the result converges towards the analytic
solution:

[image:]

Toro test 4

tests/integrated/toro-4 and tests/integrated/toro-4-energy

Toro’s test problem #4 produces two right-going shocks with a contact
between them. Left state \(\left(\rho_L, u_L, p_L\right) =
\left(5.99924, 19.5975, 460.894\right)\) Right state
\(\left(\rho_R, u_R, p_R\right) = \left(5.99242, -6.19633,
46.0950\right)\). Result at time \(t = 0.15\).

Toro test 5

tests/integrated/toro-5 and tests/integrated/toro-5-energy

The initial conditions for Toro’s test problem #5 are the same as test
#3, but the whole system is moving to the left at a uniform speed. The
velocity is chosen so that the contact discontinuity remains almost
stationary at the initial jump location. Left state
\(\left(\rho_L, u_L, p_L\right) = \left(1, -19.59745,
1000.0\right)\) Right state \(\left(\rho_R, u_R, p_R\right) =
\left(1, -19.59745, 0.01\right)\). Result at time \(t = 0.03\).

Tokamak axisymmetric transport

Simulations of transport in axisymmetric tokamak geometries, with
cross-field diffusion and interaction of plasma with neutral gas.

Finding steady state solutions

These models can be run as a time-dependent problem, for example to
study power transients, but the primary application is to finding
steady-state solutions.

Backward Euler solver

This solver uses PETSc to solve the nonlinear system of equations,
with a Backward Euler timestep to improve the condition number. There
are many choices of algorithm and settings, so the following are
guidelines and may not be optimal for all cases.

[solver]
type = beuler # Backward Euler steady-state solver
snes_type = newtonls # Nonlinear solver
ksp_type = gmres # Linear solver
max_nonlinear_iterations = 10
pc_type = hypre # Preconditioner type
pc_hypre_type = euclid # Hypre preconditioner type
lag_jacobian = 500 # Iterations between jacobian recalculations
atol = 1e-7 # Absolute tolerance
rtol = 1e-5 # Relative tolerance

PETSc can print quite extensive performance diagnostics. These can be enabled
by putting in the BOUT.inp options file:

[petsc]
log_view = true

This section can also be used to set other PETSc flags, just omitting
the leading - from the PETSc option.

cvode solver

CVODE is primarily intended for high-accuracy time integration, rather
than finding steady-state solutions, but can be effective and quite
robust. It tends to struggle at high order, so here we limit it to a
maximum of 3rd order:

[solver]
type = cvode
use_precon = true # Use the user-provided preconditioner
mxstep = 1e5
mxorder = 3 # Limit to 3rd order
atol = 1e-12
rtol = 1e-5

Here use_precon = true tells the solver to use the Hermes-3
preconditioners, which are implemented in some components. This
includes preconditioning of parallel heat conduction, and of
cross-field diffusion of neutrals.

Mesh interpolation

A useful strategy is to start with a low resolution grid, run until
close to steady-state, then interpolate the solution onto a finer mesh
and restart. This process can be repeated as a kind of simplified
multigrid method.

Post-processing

Code structure

A hermes-3 model, like all BOUT++ models [https://bout-dev.readthedocs.io/en/latest/user_docs/physics_models.htmlject.github.io/],
is an implementation of a set of Ordinary Differential Equations
(ODEs). The time integration solver drives the simulation, calling the
Hermes::rhs function to calculate the time-derivatives of all the
evolving variables.

The calculation of the time derivatives is coordinated by passing
a state object between components. The state is a nested tree, and
can have values inserted and retrieved by the components. The components
are created and then run by a scheduler, based on settings in the
input (BOUT.inp) file.

In terms of design patterns, the method used here is essentially a combination
of the Encapsulate Context [https://accu.org/journals/overload/12/63/kelly_246/]
and Command [https://en.wikipedia.org/wiki/Command_pattern] patterns.

Simulation state

The simulation state is passed between components, and is a tree of
objects (Options objects). At the start of each iteration (rhs call) a
new state is created and contains:

	time BoutReal, the current simulation time

	units

	seconds Multiply by this to get units of seconds

	eV Temperature normalisation

	Tesla Magnetic field normalisation

	meters Length normalisation

	inv_meters_cubed Density normalisation

so the temperature normalisation can be extracted using:

BoutReal Tnorm = state["units"]["eV"];

As the components of a model are run, they set, modify and use values
stored in this state. To ensure that components use consistent names
for their input and output variables, a set of conventions are used
for new variables which are added to the state:

	species Plasma species

	e Electron species

	species1 Example “h”, “he+2”

	AA Atomic mass, proton = 1

	charge Charge, in units of proton charge (i.e. electron=-1)

	density

	momentum

	pressure

	velocity Parallel velocity

	temperature

	collision_frequency Normalised collision frequency

	density_source Normalised particle source

	momentum_source Normalised momentum source

	energy_source Normalised energy source

	fields

	vorticity

	phi Electrostatic potential

	DivJdia Divergence of diamagnetic current

	DivJcol Divergence of collisional current

	DivJextra Divergence of current, including 2D parallel current
closures. Not including diamagnetic, parallel current due to
flows, or polarisation currents

For example to get the electron density:

Field3D ne = state["species"]["e"]["density"];

This way of extracting values from the state will print the value to
the log file, and is intended mainly for initialisation. In
Component::transform() and Component::finally() functions which run
frequently, faster access methods are used which don’t print to the
log. To get a value:

Field3D ne = get<Field3D>(state["species"]["e"]["density"]);

If the value isn’t set, or can’t be converted to the given type,
then a BoutException will be thrown.

To set a value in the state, there is the set() function:

set(state["species"]["h"]["density"], ne);

A common need is to add or subtract values from fields, such as density sources:

add(state["species"]["h"]["density_source"], recombination_rate);
subtract(state["species"]["h+"]["density_source"], recombination_rate);

Notes:

	When checking if a subsection exists, use option.isSection, since option.isSet
is false if it is a section and not a value.

	The species name convention is that the charge state is last, after the + or -
sign: n2+ is a singly charged nitrogen molecule, while n+2 is a +2 charged
nitrogen atom.

Components

The basic building block of all Hermes-3 models is the
Component. This defines an interface to a class which takes a state
(a tree of dictionaries/maps), and transforms (modifies) it. After
all components have modified the state in turn, all components may
then implement a finally method to take the final state but not
modify it. This allows two components to depend on each other, but
makes debugging and testing easier by limiting the places where the
state can be modified.

	
struct Component

	Interface for a component of a simulation model

The constructor of derived types should have signature (std::string name, Options &options, Solver *solver)

Subclassed by AmjuelReaction, AnomalousDiffusion, Collisions, DiamagneticDrift, Electromagnetic, ElectronForceBalance, ElectronViscosity, EvolveDensity, EvolveEnergy, EvolveMomentum, EvolvePressure, FixedDensity, FixedFractionIons, FixedFractionRadiation< CoolingCurve >, FixedTemperature, FixedVelocity, HydrogenChargeExchange, Ionisation, IonViscosity, Isothermal, NeutralBoundary, NeutralFullVelocity, NeutralMixed, NeutralParallelDiffusion, NoFlowBoundary, OpenADAS, OpenADASChargeExchange, PolarisationDrift, Quasineutral, Recycling, RelaxPotential, ScaleTimeDerivs, SetTemperature, SheathBoundary, SheathBoundaryInsulating, SheathBoundarySimple, SheathClosure, SimpleConduction, SNBConduction, SOLKITHydrogenChargeExchange, SOLKITNeutralParallelDiffusion, SoundSpeed, ThermalForce, Transform, UpstreamDensityFeedback, Vorticity, ZeroCurrent

Public Functions

	
virtual void transform(Options &state) = 0

	Modify the given simulation state All components must implement this function

	
inline virtual void finally(const Options &state)

	Use the final simulation state to update internal state (e.g. time derivatives)

	
inline virtual void outputVars(Options &state)

	Add extra fields for output, or set attributes e.g docstrings.

	
inline virtual void restartVars(Options &state)

	Add extra fields to restart files.

	
inline virtual void precon(const Options &state, BoutReal gamma)

	Preconditioning.

Public Static Functions

	
static std::unique_ptr<Component> create(const std::string &type, const std::string &name, Options &options, Solver *solver)

	Create a Component

	Parameters:

	
	type – The name of the component type to create (e.g. “evolve_density”)

	name – The species/name for this instance.

	options – Component settings: options[name] are specific to this component

	solver – Time-integration solver

Components are usually defined in separate files; sometimes multiple
components in one file if they are small and related to each other (e.g.
atomic rates for the same species). To be able to create components,
they need to be registered in the factory. This is done in the header
file using a code like:

#include "component.hxx"

struct MyComponent : public Component {
 MyComponent(const std::string &name, Options &options, Solver *solver);
 ...
};

namespace {
RegisterComponent<MyComponent> registercomponentmine("mycomponent");
}

where MyComponent is the component class, and “mycomponent” is the
name that can be used in the BOUT.inp settings file to create a
component of this type. Note that the name can be any string except it
can’t contain commas or brackets (), and shouldn’t start or end with
whitespace.

Inputs to the component constructors are:

	name

	alloptions

	solver

The name is a string labelling the instance. The alloptions tree contains at least:

	alloptions[name] options for this instance

	alloptions['units']

Component scheduler

The simulation model is created in Hermes::init by a call to the ComponentScheduler:

scheduler = ComponentScheduler::create(options, Options::root(), solver);

and then in Hermes::rhs the components are run by a call:

scheduler->transform(state);

The call to ComponentScheduler::create() treats the “components”
option as a comma-separated list of names. The order of the components
is the order that they are run in. For each name in the list, the
scheduler looks up the options under the section of that name.

[hermes]
components = component1, component2

[component1]

options to control component1

[component2]

options to control component2

This would create two Component objects, of type component1 and
component2. Each time Hermes::rhs is run, the transform
functions of component1 amd then component2 will be called,
followed by their finally functions.

It is often useful to group components together, for example to
define the governing equations for different species. A type setting
in the option section overrides the name of the section, and can be another list
of components

[hermes]
components = group1, component3

[group1]
type = component1, component2

options to control component1 and component2

[component3]

options to control component3

This will create three components, which will be run in the order
component1, component2, component3: First all the components
in group1, and then component3.

	
class ComponentScheduler

	Creates and schedules model components

Currently only one implementation, but in future alternative scheduler types could be created. There is therefore a static create function which in future could switch between types.

Public Functions

	
void transform(Options &state)

	Run the scheduler, modifying the state. This calls all components’ transform() methods, then all component’s finally() methods.

	
void outputVars(Options &state)

	Add metadata, extra outputs. This would typically be called only for writing to disk, rather than every internal timestep.

	
void restartVars(Options &state)

	Add variables to restart files.

	
void precon(const Options &state, BoutReal gamma)

	Preconditioning.

Public Static Functions

	
static std::unique_ptr<ComponentScheduler> create(Options &scheduler_options, Options &component_options, Solver *solver)

	Inputs

	Parameters:

	
	scheduler_options – Configuration of the scheduler Should contain “components”, a comma-separated list of component names

	component_options – Configuration of the components.
	<name>
	type = Component classes, … If not provided, the type is the same as the name Multiple classes can be given, separated by commas. All classes will use the same Options section.

	… Options to control the component(s)

	solver – Used for time-dependent components to evolve quantities

Components

This section describes the model components currently available.

Species density

The density of a species can be calculated in several different ways,
and are usually needed by other components.

fixed_density

Set the density to a value which does not change in time. For example:

[d]
type = fixed_density, ...

AA = 2 # Atomic mass
charge = 0
density = 1e17 # In m^-3

Note that the density can be a function of x, y and z coordinates
for spatial variation.

The implementation is in the FixedDensity class:

	
struct FixedDensity : public Component

	Set ion density to a fixed value

Public Functions

	
inline FixedDensity(std::string name, Options &alloptions, Solver *solver)

	Inputs
	<name>
	AA

	charge

	density value (expression) in units of m^-3

	
inline virtual void transform(Options &state) override

	Sets in the state the density, mass and charge of the species

	species
	<name>
	AA

	charge

	density

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

evolve_density

This component evolves the species density in time, using the BOUT++
time integration solver. The species charge and atomic mass must be set,
and the initial density should be specified in its own section:

[d]
type = evolve_density, ...

AA = 2 # Atomic mass
charge = 0

[Nd]
function = 1 - 0.5x # Initial condition, normalised to Nnorm

The implementation is in the EvolveDensity class:

	
struct EvolveDensity : public Component

	Evolve species density in time

Mesh inputs

N<name>_src A source of particles, per cubic meter per second. This can be over-ridden by the source option setting.

Public Functions

	
EvolveDensity(std::string name, Options &options, Solver *solver)

	Inputs

	<name>
	charge Particle charge e.g. hydrogen = 1

	AA Atomic mass number e.g. hydrogen = 1

	bndry_flux Allow flow through radial boundaries? Default is true.

	poloidal_flows Include poloidal ExB flows? Default is true.

	density_floor Minimum density floor. Default is 1e-5 normalised units

	low_n_diffuse Enhance parallel diffusion at low density? Default false

	hyper_z Hyper-diffusion in Z. Default off.

	evolve_log Evolve logarithm of density? Default false.

	diagnose Output additional diagnostics?

	N<name> e.g. “Ne”, “Nd+”
	source Source of particles [/m^3/s] NOTE: This overrides mesh input N<name>_src

	source_only_in_core Zero the source outside the closed field-line region?

	neumann_boundary_average_z Apply Neumann boundaries with Z average?

	
virtual void transform(Options &state) override

	This sets in the state
	species
	<name>
	AA

	charge

	density

	
virtual void finally(const Options &state) override

	Calculate ddt(N).

Requires state components
	species
	<name>
	density

Optional components
	species
	<name>
	velocity If included, requires sound_speed or temperature

	density_source

	fields
	phi If included, ExB drift is calculated

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

upstream_density_feedback

This is intended for 1D simulations, where the density at \(y=0\) is set
by adjusting an input source. This component uses a PI controller method
to scale the density source up and down, to maintain the specified upstream
density.
The source, e.g. Sd+_feedback, is calculated as a product of the control signal density_source_multiplier,
and the array density_source_shape which defines the source region.
The signal is non-dimensional and the controller depends on the value of density_source_shape to have a good initial guess of the source.
It should be set to a reasonable value in the units of [m-3s-1].
A good reasonable value is the expected steady state domain particle loss (for example due to unrecycled ions at the target).

For example:

[d+]
type = ..., upstream_density_feedback

density_upstream = 1e19 # Density in m^-3
density_controller_p = 1e-2 # Feedback controller proportional (p) parameter
density_controller_i = 1e-3 # Feedback controller integral (i) parameter

[Nd+]
source_shape = h(pi - y) * 1e20 # Source shape

There are two additional settings which can make the controller more robust without excessive tuning:

density_source_positive ensures the controller never takes particles away, which can prevent oscillatory
behaviour. Note that this requires some other domain particle sink to ensure control, or else the particle count can never reduce.

density_integral_positive This makes sure the integral component only adds particles.
The integral component takes a long time to change value, which can result in large overshoots if the initial guess was too small.
This setting mitigates this by disabling the integral term if the density is above the desired value.

	Notes:
	
	The example cases have their PI parameters tuned properly without the need of the above two settings.

	Under certain conditions, the use of the PI controller can make the upstream density enter a very small oscillation (~0.05% of upstream value).

	There is a separate source setting that includes a fixed (non varying) density source.

The implementation is in the UpstreamDensityFeedback class:

	
struct UpstreamDensityFeedback : public Component

	Adds a time-varying density source, depending on the difference between the upstream density at y=0 and the specified value

Public Functions

	
inline UpstreamDensityFeedback(std::string name, Options &alloptions, Solver*)

	Inputs
	<name> (e.g. “d+”)
	density_upstream Upstream density (y=0) in m^-3

	density_controller_p Feedback proportional to error

	density_controller_i Feedback proportional to error integral

	density_integral_positive Force integral term to be positive? (default: false)

	density_source_positive Force density source to be positive? (default: true)

	diagnose Output diagnostic information?

	N<name> (e.g. “Nd+”)
	source_shape The initial source that is scaled by a time-varying factor

	
virtual void transform(Options &state) override

	Inputs
	<name>
	density

Outputs

	<name>
	density_source

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

	
inline virtual void restartVars(Options &state) override

	Add extra fields to restart files.

fixed_fraction_ions

This sets the density of a species to a fraction of the electron density.

quasineutral

This component sets the density of one species, so that the overall
charge density is zero everywhere. This must therefore be done after
all other charged species densities have been calculated. It only
makes sense to use this component for species with a non-zero charge.

Species pressure and temperature

isothermal

Sets the temperature of a species to a fixed value which is constant
in space and time. If the species density is set then this component
also calculates the pressure.

By default only saves the temperature once as a non-evolving variable.
If diagnose is set then pressure is also saved as a time-evolving
variable.

[e]
type = ..., isothermal

temperature = 10 # Constant temperature [eV]

	
struct Isothermal : public Component

	Set temperature to a fixed value

Public Functions

	
virtual void transform(Options &state) override

	Inputs
	species
	<name>
	density (optional)

Sets in the state

	species
	<name>
	temperature

	pressure (if density is set)

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

fixed_temperature

Sets the temperature of a species to a fixed value which is constant
in time but can vary in space. If the species density is set then this
component also calculates the pressure.

By default only saves the temperature once as a non-evolving variable.
If diagnose is set then pressure is also saved as a time-evolving
variable.

[e]
type = ..., fixed_temperature

temperature = 10 - x # Spatially dependent temperature [eV]

	
struct FixedTemperature : public Component

	Set species temperature to a fixed value

Public Functions

	
inline FixedTemperature(std::string name, Options &alloptions, Solver *solver)

	Inputs
	<name>
	temperature value (expression) in units of eV

	
inline virtual void transform(Options &state) override

	Sets in the state the temperature and pressure of the species

Inputs
	species
	<name>
	density (optional)

Sets in the state

	species
	<name>
	temperature

	pressure (if density is set)

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

evolve_pressure

Evolves the pressure in time. This pressure is named P where <species>
is the short name of the evolving species e.g. Pe.

By default parallel thermal conduction is included, which requires a collision
time. If collisions are not calculated, then thermal conduction should be turned off
by setting thermal_conduction = false in the input options.

If the component option diagnose = true then additional fields
will be saved to the dump files: The species temperature T + name
(e.g. Td+ or Te), the time derivative ddt(P + name)
(e.g. ddt(Pd+) or ddt(Pe)), and the source of pressure from
other components is saved as SP + name (e.g. SPd+ or SPe).
The pressure source is the energy density source multiplied by 2/3
(i.e. assumes a monatomic species).

\[\frac{\partial P}{\partial t} = -\nabla\cdot\left(P\mathbf{v}\right) - \frac{2}{3} P \nabla\cdot\mathbf{b}v_{||} + \frac{2}{3}\nabla\cdot\left(\kappa_{||}\mathbf{b}\mathbf{b}\cdot\nabla T\right) + \frac{2}{3}S_E + S_N\frac{1}{2}mNV^2\]

where \(S_E\) is the energy_source (thermal energy source),
and \(S_N\) is the density source.

Notes:

	Heat conduction through the boundary is turned off currently. This is because
heat losses are usually calculated at the sheath, so any additional heat conduction
would be in addition to the sheath heat transmission already included.

The implementation is in EvolvePressure:

	
struct EvolvePressure : public Component

	Evolves species pressure in time

Mesh inputs

P<name>_src A source of pressure, in Pascals per second This can be over-ridden by the source option setting.

Public Functions

	
EvolvePressure(std::string name, Options &options, Solver *solver)

	Inputs

	<name>
	bndry_flux Allow flows through radial boundaries? Default is true

	density_floor Minimum density floor. Default 1e-5 normalised units.

	diagnose Output additional diagnostic fields?

	evolve_log Evolve logarithm of pressure? Default is false

	hyper_z Hyper-diffusion in Z

	kappa_coefficient Heat conduction constant. Default is 3.16 for electrons, 3.9 otherwise

	kappa_limit_alpha Flux limiter, off by default.

	poloidal_flows Include poloidal ExB flows? Default is true

	precon Enable preconditioner? Note: solver may not use it even if enabled.

	p_div_v Use p * Div(v) form? Default is v * Grad(p) form

	thermal_conduction Include parallel heat conduction? Default is true

	P<name> e.g. “Pe”, “Pd+”
	source Source of pressure [Pa / s]. NOTE: This overrides mesh input P<name>_src

	source_only_in_core Zero the source outside the closed field-line region?

	neumann_boundary_average_z Apply Neumann boundaries with Z average?

	
virtual void transform(Options &state) override

	Inputs
	species
	<name>
	density

Sets
	species
	<name>
	pressure

	temperature Requires density

	
virtual void finally(const Options &state) override

	Optional inputs

	species
	<name>
	velocity. Must have sound_speed or temperature

	energy_source

	collision_rate (needed if thermal_conduction on)

	fields
	phi Electrostatic potential -> ExB drift

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

	
virtual void precon(const Options &state, BoutReal gamma) override

	Preconditioner

evolve_energy

Note This is currently under development and has some unresolved
issues with boundary conditions. Only for testing purposes.

This evolves the sum of species internal energy and parallel kinetic
energy, \(\mathcal{E}\):

\[\mathcal{E} = \frac{1}{\gamma - 1} P + \frac{1}{2}m nv_{||}^2\]

Note that this component requires the parallel velocity \(v_{||}\)
to calculate the pressure. It must therefore be listed after a component
that sets the velocity, such as evolve_momentum:

[d]
type = ..., evolve_momentum, evolve_energy

The energy density will be saved as E (e.g Ed) and the
pressure as P (e.g. Pd). Additional diagnostics, such as the
temperature, can be saved by setting the option diagnose = true.

	
struct EvolveEnergy : public Component

	Evolves species internal energy in time

Mesh inputs

P<name>_src A source of pressure, in Pascals per second This can be over-ridden by the source option setting.

Public Functions

	
EvolveEnergy(std::string name, Options &options, Solver *solver)

	Inputs

	<name>
	bndry_flux Allow flows through radial boundaries? Default is true

	density_floor Minimum density floor. Default 1e-5 normalised units.

	diagnose Output additional diagnostic fields?

	evolve_log Evolve logarithm of pressure? Default is false

	hyper_z Hyper-diffusion in Z

	kappa_coefficient Heat conduction constant. Default is 3.16 for electrons, 3.9 otherwise

	kappa_limit_alpha Flux limiter, off by default.

	poloidal_flows Include poloidal ExB flows? Default is true

	precon Enable preconditioner? Note: solver may not use it even if enabled.

	thermal_conduction Include parallel heat conduction? Default is true

	E<name> e.g. “Ee”, “Ed+”
	source Source of energy [W / s]. NOTE: This overrides mesh input P<name>_src

	source_only_in_core Zero the source outside the closed field-line region?

	neumann_boundary_average_z Apply Neumann boundaries with Z average?

	
virtual void transform(Options &state) override

	Inputs
	species
	<name>
	density

	velocity

Sets
	species
	<name>
	pressure

	temperature

	
virtual void finally(const Options &state) override

	Optional inputs

	species
	<name>
	velocity. Must have sound_speed or temperature

	energy_source

	collision_rate (needed if thermal_conduction on)

	fields
	phi Electrostatic potential -> ExB drift

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

	
virtual void precon(const Options &state, BoutReal gamma) override

	Preconditioner

SNB nonlocal heat flux

Calculates the divergence of the electron heat flux using the
Shurtz-Nicolai-Busquet (SNB) model. Uses the BOUT++ implementation which is
documented here [https://bout-dev.readthedocs.io/en/latest/user_docs/nonlocal.html?#snb-model].

	
struct SNBConduction : public Component

	Calculate electron heat flux using the Shurtz-Nicolai-Busquet (SNB) model

This component will only calculate divergence of heat flux for the electron (e) species.

Usage

Add as a top-level component after both electron temperature and collision times have been calculated.

Important: If evolving electron pressure, disable thermal conduction or that will continue to add Spitzer heat conduction.

[hermes]
components = e, ..., collisions, snb_conduction

[e]
type = evolve_pressure, ...
thermal_conduction = false # For evolve_pressure

[snb_conduction]
diagnose = true # Saves heat flux diagnostics

Useful references:

	Braginskii equations by R.Fitzpatrick: http://farside.ph.utexas.edu/teaching/plasma/Plasmahtml/node35.html

	J.P.Brodrick et al 2017: https://doi.org/10.1063/1.5001079 and https://arxiv.org/abs/1704.08963

	Shurtz, Nicolai and Busquet 2000: https://doi.org/10.1063/1.1289512

Public Functions

	
inline SNBConduction(std::string name, Options &alloptions, Solver*)

	Inputs
	<name>
	diagnose Saves Div_Q_SH and Div_Q_SNB

	
virtual void transform(Options &state) override

	Inputs
	species
	e
	density

	collision_frequency

Sets
	species
	e
	energy_source

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Species parallel dynamics

fixed_velocity

Sets the velocity of a species to a fixed value which is constant
in time but can vary in space. If the species density is set then this
component also calculates the momentum.

Saves the temperature once as a non-evolving variable.

[e]
type = ..., fixed_velocity

velocity = 10 + sin(z) # Spatially dependent velocity [m/s]

	
struct FixedVelocity : public Component

	Set parallel velocity to a fixed value

Public Functions

	
inline virtual void transform(Options &state) override

	This sets in the state
	species
	<name>
	velocity

	momentum

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

evolve_momentum

Evolves the momentum NV in time. The evolving quantity includes the atomic
mass number, so should be divided by AA to obtain the particle flux.

If the component option diagnose = true then additional fields
will be saved to the dump files: The velocity V + name
(e.g. Vd+ or Ve), the time derivative ddt(NV + name)
(e.g. ddt(NVd+) or ddt(NVe)), and the source of momentum
density (i.e force density) from other components is saved as SNV +
name (e.g. SNVd+ or SNVe).

The implementation is in EvolveMomentum:

	
struct EvolveMomentum : public Component

	Evolve parallel momentum.

Public Functions

	
virtual void transform(Options &state) override

	This sets in the state
	species
	<name>
	momentum

	velocity if density is defined

	
virtual void finally(const Options &state) override

	Calculate ddt(NV).

Inputs
	species
	<name>
	density

	velocity

	pressure (optional)

	momentum_source (optional)

	sound_speed (optional, used for numerical dissipation)

	temperature (only needed if sound_speed not provided)

	fields
	phi (optional)

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

zero_current

This calculates the parallel flow of one charged species so that there is no net current,
using flows already calculated for other species. It is used like quasineutral:

[hermes]
components = h+, ..., e, ... # Note: e after all other species

[e]
type = ..., zero_current,... # Set e:velocity

charge = -1 # Species must have a charge

electron_force_balance

This calculates a parallel electric field which balances the electron
pressure gradient and other forces on the electrons (including
collisional friction, thermal forces):

\[E_{||} = \left(-\nabla p_e + F\right) / n_e\]

where \(F\) is the momentum_source for the electrons.
This electric field is then used to calculate a force on the other species:

\[F_z = Z n_z E_{||}\]

which is added to the ion’s momentum_source.

The implementation is in ElectronForceBalance:

	
struct ElectronForceBalance : public Component

	Balance the parallel electron pressure gradient against the electric field. Use this electric field to calculate a force on the other species

E = (-∇p_e + F) / n_e

where F is the momentum source for the electrons.

Then uses this electric field to calculate a force on all ion species.

Note: This needs to be put after collisions and other components which impose forces on electrons

Public Functions

	
virtual void transform(Options &state) override

	Required inputs
	species
	e
	pressure

	density

	momentum_source [optional] Asserts that charge = -1

Sets in the input
	species
	<all except=”” e>=””> if both density and charge are set
	momentum_source

electron_viscosity

Calculates the Braginskii electron parallel viscosity, adding a force (momentum source)
to the electron momentum equation:

\[F = \sqrt{B}\nabla\cdot\left[\frac{\eta_e}{B}\mathbf{b}\mathbf{b}\cdot\nabla\left(\sqrt{B}V_{||e}\right)\right]\]

The electron parallel viscosity is

\[\eta_e = \frac{4}{3} 0.73 p_e \tau_e\]

where \(\tau_e\) is the electron collision time. The collisions between electrons
and all other species therefore need to be calculated before this component is run:

[hermes]
components = ..., e, ..., collisions, electron_viscosity

	
struct ElectronViscosity : public Component

	Electron viscosity

Adds Braginskii parallel electron viscosity, with SOLPS-style viscosity flux limiter

Needs to be calculated after collisions, because collision frequency is used to calculate parallel viscosity

References
	https://farside.ph.utexas.edu/teaching/plasma/lectures1/node35.html

Public Functions

	
ElectronViscosity(std::string name, Options &alloptions, Solver*)

	Braginskii electron viscosity.

Inputs
	<name>
	diagnose: bool, default false Output diagnostic SNVe_viscosity?

	eta_limit_alpha: float, default -1.0 Flux limiter coefficient. < 0 means no limiter

	
virtual void transform(Options &state) override

	Inputs
	species
	e
	pressure (skips if not present)

	velocity (skips if not present)

	collision_frequency

Sets in the state
	species
	e
	momentum_source

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

ion_viscosity

Adds ion viscosity terms to all charged species that are not electrons.
The collision frequency is required so this is a top-level component that
must be calculated after collisions:

[hermes]
components = ..., collisions, ion_viscosity

By default only the parallel diffusion of momentum is included, adding a force to each
ion’s momentum equation:

\[F = \sqrt{B}\nabla\cdot\left[\frac{\eta_i}{B}\mathbf{b}\mathbf{b}\cdot\nabla\left(\sqrt{B}V_{||i}\right)\right]\]

The ion parallel viscosity is

\[\eta_i = \frac{4}{3} 0.96 p_i \tau_i\]

If the perpendicular option is set:

[ion_viscosity]
perpendicular = true # Include perpendicular flows

Then the ion scalar viscous pressure is calculated as:

\[\Pi_{ci} = \Pi_{ci||} + \Pi_{ci\perp}\]

where \(\Pi_{ci||}\) corresponds to the parallel diffusion of momentum above.

\[\Pi_{ci||} = - 0.96 \frac{2p_i\tau_i}{\sqrt{B}} \partial_{||}\left(\sqrt{B} V_{||i}\right)\]

The perpendicular part is calculated from:

\[\begin{split}\begin{aligned}\Pi_{ci\perp} =& 0.96 p_i\tau_i \kappa \cdot \left[\mathbf{V}_E + \mathbf{V}_{di} + 1.16\frac{\mathbf{b}\times\nabla T_i}{B} \right] \\
=& -0.96 p_i\tau_i\frac{1}{B}\left(\mathbf{b}\times\kappa\right)\cdot\left[\nabla\phi + \frac{\nabla p_i}{en_i} + 1.61\nabla T_i \right]\end{aligned}\end{split}\]

A parallel force term is added, in addition to the parallel viscosity above:

\[F = -\frac{2}{3}B^{3/2}\partial_{||}\left(\frac{\Pi_{ci\perp}}{B^{3/2}}\right)\]

In the vorticity equation the viscosity appears as a divergence of a current:

\[\mathbf{J}_{ci} = \frac{\Pi_{ci}}{2}\nabla\times\frac{\mathbf{b}}{B} - \frac{1}{3}\frac{\mathbf{b}\times\nabla\Pi_{ci}}{B}\]

that transfers energy between ion internal energy and \(E\times B\) energy:

\[\begin{split}\begin{aligned}\frac{\partial \omega}{\partial t} =& \ldots + \nabla\cdot\mathbf{J}_{ci} \\
\frac{\partial p_i}{\partial t} =& \ldots - \mathbf{J}_{ci}\cdot\nabla\left(\phi + \frac{p_i}{n_0}\right)\end{aligned}\end{split}\]

Note that the sum of the perpendicular and parallel contributions to the ion viscosity act to damp
the net poloidal flow. This can be seen by assuming that \(\phi\), \(p_i\) and \(T_i\)
are flux functions. We can then write:

\[\Pi_{ci\perp} = -0.96 p_i\tau_i \frac{1}{B}\left(\mathbf{b}\times\kappa\right)\cdot\nabla\psi F\left(\psi\right)\]

where

\[F\left(\psi\right) = \frac{\partial\phi}{\partial\psi} + \frac{1}{en}\frac{\partial p_i}{\partial\psi} + 1.61\frac{\partial T_i}{\partial\psi}\]

Using the approximation

\[\left(\mathbf{b}\times\kappa\right)\cdot\nabla\psi \simeq -RB_\zeta \partial_{||}\ln B\]

expanding:

\[\frac{2}{\sqrt{B}}\partial_{||}\left(\sqrt{B}V_{||i}\right) = 2\partial_{||}V_{||i} + V_{||i}\partial_{||}\ln B\]

and neglecting parallel gradients of velocity gives:

\[\Pi_{ci} \simeq 0.96 p_i\tau_i \left[\frac{RB_{\zeta}}{B}F\left(\psi\right) - V_{||i} \right]\partial_{||}\ln B\]

Notes and implementation details:
- The magnitude of \(\Pi_{ci\perp}\) and \(\Pi_{ci||}\) are individually

limited to be less than or equal to the scalar pressure \(Pi\) (though can have
opposite sign). The reasoning is that if these off-diagonal terms become large then
the model is likely breaking down. Occasionally happens in low-density regions.

	
struct IonViscosity : public Component

	Ion viscosity terms

Adds a viscosity to all species which are not electrons

Uses Braginskii collisional form, combined with a SOLPS-like flux limiter.

Needs to be calculated after collisions, because collision frequency is used to calculate parallel viscosity

The ion stress tensor Pi_ci is split into perpendicular and parallel pieces:

Pi_ci = Pi_ciperp + Pi_cipar

In the parallel ion momentum equation the Pi_cipar term is solved as a parallel diffusion, so is treated separately All other terms are added to Pi_ciperp, even if they are not really parallel parts

Public Functions

	
IonViscosity(std::string name, Options &alloptions, Solver*)

	Inputs
	<name>
	eta_limit_alpha: float, default -1 Flux limiter coefficient. < 0 means off.

	perpendicular: bool, default false Include perpendicular flows? Requires curvature vector and phi potential

	
virtual void transform(Options &state) override

	Inputs
	species
	<name> (skips “e”)
	pressure (skips if not present)

	velocity (skips if not present)

	collision_frequency

Sets in the state
	species
	<name>
	momentum_source

	
virtual void outputVars(Options &state) override

	Save variables to the output.

simple_conduction

This is a simplified parallel heat conduction model that can be used when a linearised model is needed.
If used, the thermal conduction term in evolve_pressure component should be disabled.

[hermes]
components = e, ...

[e]
type = evolve_pressure, simple_conduction

thermal_conduction = false # Disable term in evolve_pressure

To linearise the heat conduction the temperature and density used in
calculating the Coulomb logarithm and heat conduction coefficient can
be fixed by specifying conduction_temperature and
conduction_density.

Note: For hydrogenic plasmas this produces very similar parallel electron
heat conduction as the evolve_pressure term with electron-electron collisions
disabled.

	
struct SimpleConduction : public Component

	Simplified models of parallel heat conduction

Intended mainly for testing.

Expressions taken from: https://farside.ph.utexas.edu/teaching/plasma/lectures1/node35.html

Public Functions

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

Drifts

The ExB drift is included in the density, momentum and pressure evolution equations if
potential is calculated. Other drifts can be added with the following components.

diamagnetic_drift

Adds diamagnetic drift terms to all species’ density, pressure and parallel momentum
equations. Calculates the diamagnetic drift velocity as

\[\mathbf{v}_{dia} = \frac{T}{q} \nabla\times\left(\frac{\mathbf{b}}{B}\right)\]

where the curvature vector \(\nabla\times\left(\frac{\mathbf{b}}{B}\right)\)
is read from the bxcv mesh input variable.

	
struct DiamagneticDrift : public Component

	Calculate diamagnetic flows.

Public Functions

	
virtual void transform(Options &state) override

	For every species, if it has:
	temperature

	charge

Modifies:
	density_source

	energy_source

	momentum_source

polarisation_drift

This calculates the polarisation drift of all charged species,
including ions and electrons. It works by approximating the drift
as a potential flow:

\[\mathbf{v}_{pol} = - \frac{m}{q B^2} \nabla_\perp\phi_{pol}\]

where \(\phi_{pol}\) is approximately the time derivative of the
electrostatic potential \(\phi\) in the frame of the fluid, with
an ion diamagnetic contribution. This is calculated by inverting a
Laplacian equation similar to that solved in the vorticity equation.

This component needs to be run after all other currents have been
calculated. It marks currents as used, so out-of-order modifications
should raise errors.

See the examples/blob2d-vpol example, which contains:

[hermes]
components = e, vorticity, sheath_closure, polarisation_drift

[polarisation_drift]
diagnose = true

Setting diagnose = true saves DivJ to the dump files with the divergence of all
currents except polarisation, and phi_pol which is the polarisation flow potential.

	
struct PolarisationDrift : public Component

	Calculates polarisation drift terms for all charged species, both ions and electrons.

Approximates the polarisation drift by a generalised flow potential phi_pol

v_pol = - (A / (Z * B^2)) * Grad_perp(phi_pol)

phi_pol is approximately the time derivative of the electric potential in the frame of the flow, plus an ion diamagnetic contribution

phi_pol is calculated using:

Div(mass_density / B^2 * Grad_perp(phi_pol)) = Div(Jpar) + Div(Jdia) + …

Where the divergence of currents on the right is calculated from:
	species[…][“momentum”] The parallel momentum of charged species

	DivJdia, diamagnetic current, calculated in vorticity component

	DivJcol collisional current, calculated in vorticity component

	DivJextra Other currents, eg. 2D parallel closures

The mass_density quantity is the sum of density * atomic mass for all charged species (ions and electrons)

Public Functions

	
virtual void transform(Options &state) override

	Inputs

	species
	… All species with both charge and mass
	AA

	charge

	density

	momentum (optional)

	fields
	DivJextra (optional)

	DivJdia (optional)

	DivJcol (optional)

Sets

	species
	… All species with both charge and mass
	density_source

	energy_source (if pressure set)

	momentum_source (if momentum set)

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Neutral gas models

The neutral_mixed component solves fluid equations along \(y\)
(parallel to the magnetic field), and uses diffusive transport in \(x\)
and \(z\). It was adopted from the approach used in UEDGE and this paper
[Journal of Nuclear Materials, vol. 313-316, pp. 559-563 (2003)].

\[\begin{split}\begin{aligned}\frac{\partial n_n}{\partial t} =& -\nabla\cdot\left(n_n\mathbf{b}v_{||n} + n_n\mathbf{v}_{\perp n}\right) + S\\ \frac{\partial}{\partial t}\left(n_nv_{||n}\right) =& -\nabla\cdot\left(n_nv_{||n} \mathbf{b}v_{||n} + n_nv_{||n}\mathbf{v}_{\perp n}\right) - \partial_{||}p_n + \nabla_{||}\left(D_{nn}n_n\partial_{||}v_{||n}\right) + F \\ \frac{\partial p_n}{\partial t} =& -\nabla\cdot\left(p_n\mathbf{b}v_{||n} + p_n\mathbf{v}_{\perp n}\right) - \frac{2}{3}p_n\nabla\cdot\left(\mathbf{b}v_{||n}\right) + \nabla\cdot\left(D_{nn}n_n\nabla_\perp T_n\right) + \frac{2}{3}Q \end{aligned}\end{split}\]

The parallel momentum is evolved, so that it can be exchanged with the
plasma parallel momentum, but the mass is neglected for perpendicular
motion. In the perpendicular direction, therefore, the motion is a
balance between the friction (primarily with the plasma through charge
exchange) and the pressure gradient:

\[\mathbf{v}_{\perp n} = -D_{nn}\frac{1}{p_n}\nabla_\perp p_n\]

At the moment there is no attempt to limit these velocities, which has
been found necessary in UEDGE to get physical results in better
agreement with kinetic neutral models [Discussion, T.Rognlien].

Boundary conditions

noflow_boundary

This is a species component which imposes a no-flow boundary condition
on y (parallel) boundaries.

	Zero-gradient boundary conditions are applied to density,
temperature and pressure fields, if they are set.

	Zero-value boundary conditions are applied to velocity and
momentum if they are set.

By default both yup and ydown boundaries are set, but can be turned
off by setting noflow_lower_y or noflow_upper_y to false.

Example: To set no-flow boundary condition on an ion d+ at the lower
y boundary, with a sheath boundary at the upper y boundary:

[hermes]
components = d+, sheath_boundary

[d+]
type = noflow_boundary

noflow_lower_y = true # This is the default
noflow_upper_y = false # Turn off no-flow at upper y for d+ species

[sheath_boundary]
lower_y = false # Turn off sheath lower boundary for all species
upper_y = true

Note that currently noflow_boundary is set per-species, whereas
sheath_boundary is applied to all species. This is because sheath
boundary conditions couple all charged species together, and doesn’t
affect neutral species.

The implementation is in NoFlowBoundary:

	
struct NoFlowBoundary : public Component

	
Public Functions

	
virtual void transform(Options &state) override

	Inputs
	species
	<name>
	density [Optional]

	temperature [Optional]

	pressure [Optional]

	velocity [Optional]

	momentum [Optional]

neutral_boundary

Sets Y (sheath/target) boundary conditions on neutral particle
density, temperature and pressure. A no-flow boundary condition
is set on parallel velocity and momentum. It is a species-specific
component and so goes in the list of components for the species
that the boundary condition should be applied to.

An energy sink is added to the flux of heat to the wall, with
heat flux q:

\[\begin{align}\begin{aligned}q = \gamma_{heat} n T v_{th}\\v_{th} = \sqrt{eT / m}\end{aligned}\end{align} \]

The factor gamma_heat

[hermes]
components = d

[d]
type = ... , neutral_boundary

gamma_heat = 3 # Neutral boundary heat transmission coefficient
neutral_lower_y = true # Boundary on lower y?
neutral_upper_y = true # Boundary on upper y?

	
struct NeutralBoundary : public Component

	Per-species boundary condition for neutral particles at sheath (Y) boundaries.

Sets boundary conditions:
	Free boundary conditions on logarithm of density, temperature and pressure

	No-flow boundary conditions on velocity and momentum.

Adds an energy sink corresponding to a flux of heat to the walls.

Heat flux into the wall is q = gamma_heat * n * T * v_th

where v_th = sqrt(eT/m) is the thermal speed

Public Functions

	
virtual void transform(Options &state) override

	state
	species
	<name>
	density Free boundary

	temperature Free boundary

	pressure Free boundary

	velocity [if set] Zero boundary

	momentum [if set] Zero boundary

	energy_source Adds wall losses

Collective quantities

These components combine multiple species together. They are typically
listed after all the species groups in the component list, so that all
the species are present in the state.

One of the most important is the collisions component. This sets collision
times for all species, which are then used

sound_speed

Calculates the collective sound speed, by summing the pressure of all species,
and dividing by the sum of the mass density of all species:

\[c_s = \sqrt{\sum_i P_i / \sum_i m_in_i}\]

This is set in the state as sound_speed, and is used for the numerical
diffusion terms in the parallel advection.

neutral_parallel_diffusion

This adds diffusion to all neutral species (those with no or zero charge),
because it needs to be calculated after the collision frequencies are known.

[hermes]
components = ... , collisions, neutral_parallel_diffusion

[neutral_parallel_diffusion]
dneut = 1 # Diffusion multiplication factor
diagnose = true # This enables diagnostic output for each species

It is intended mainly for 1D simulations, to provide effective parallel
diffusion of particles, momentum and energy due to the projection of
cross-field diffusion:

\[\begin{split}\begin{aligned}
\frac{\partial n_n}{\partial t} =& \ldots + \nabla\cdot\left(\mathbf{b}D_n n_n\partial_{||}p_n\right) \\
\frac{\partial p_n}{\partial t} =& \ldots + \nabla\cdot\left(\mathbf{b}D_n p_n\partial_{||}p_n\right) + \frac{2}{3}\nabla\cdot\left(\mathbf{b}\kappa_n \partial_{||}T_n\right) \\
\frac{\partial}{\partial t}\left(n_nv_{||n}\right) =& \ldots + \nabla\cdot\left(\mathbf{b}D_n n_nv_{||n} \partial_{||}p_n\right) + \nabla\cdot\left(\mathbf{b}\eta_n \partial_{||}T_n\right)
\end{aligned}\end{split}\]

The diffusion coefficient is calculated as

\[D_n = \left(\frac{B}{B_{pol}}\right)^2 \frac{T_n}{A \nu}\]

where A is the atomic mass number; \(\nu\) is the collision
frequency. The factor \(B / B_{pol}\) is the projection of the cross-field
direction on the parallel transport, and is the dneut input setting.

	
struct NeutralParallelDiffusion : public Component

	Add effective diffusion of neutrals in a 1D system, by projecting cross-field diffusion onto parallel distance.

Note: This needs to be calculated after the collision frequency, so is a collective component. This therefore applies diffusion to all neutral species i.e. those with no (or zero) charge

If diagnose = true then the following outputs are saved for each neutral species

	D<name>_Dpar Parallel diffusion coefficient e.g. Dhe_Dpar

	S<name>_Dpar Density source due to diffusion

	E<name>_Dpar Energy source due to diffusion

	F<name>_Dpar Momentum source due to diffusion

Public Functions

	
virtual void transform(Options &state) override

	Inputs
	species
	<all neutrals>=””> # Applies to all neutral species
	AA

	collision_frequency

	density

	temperature

	pressure [optional, or density * temperature]

	velocity [optional]

	momentum [if velocity set]

Sets
	species
	<name>
	density_source

	energy_source

	momentum_source [if velocity set]

	
virtual void outputVars(Options &state) override

	Save variables to the output.

collisions

For collisions between charged particles. In the following all
quantities are in SI units except the temperatures: \(T\) is in
eV, so \(eT\) has units of Joules.

Debye length \(\lambda_D\)

\[\lambda_D = \sqrt{\frac{\epsilon_0 T_e}{n_e e}}\]

Coulomb logarithm, from [NRL formulary 2019], adapted to SI units

	For thermal electron-electron collisions

\[\ln \lambda_{ee} = 30.4 - \frac{1}{2} \ln\left(n_e\right) + \frac{5}{4}\ln\left(T_e\right) - \sqrt{10^{-5} + \left(\ln T_e - 2\right)^2 / 16}\]

where the coefficient (30.4) differs from the NRL value due to
converting density from cgs to SI units (\(30.4 = 23.5 -
0.5\ln\left(10^{-6}\right)\)).

	Electron-ion collisions

\[\begin{split}\ln \lambda_{ei} = \left\{\begin{array}{ll}
 10 & \textrm{if } T_e < 0.1 \textrm{eV or } n_e < 10^{10}m^{-3} \\
 30 - \frac{1}{2}\ln\left(n_e\right) - \ln(Z) + \frac{3}{2}\ln\left(T_e\right) & \textrm{if } T_im_e/m_i < T_e < 10Z^2 \\
 31 - \frac{1}{2}\ln\left(n_e\right) + \ln\left(T_e\right) & \textrm{if } T_im_e/m_i < 10Z^2 < T_e \\
 23 - \frac{1}{2}\ln\left(n_i\right) + \frac{3}{2}\ln\left(T_i\right) - \ln\left(Z^2\mu\right) & \textrm{if } T_e < T_im_e/m_i \\
 \end{array}\right.\end{split}\]

	Mixed ion-ion collisions

\[\ln \lambda_{ii'} = 29.91 - ln\left[\frac{ZZ'\left(\mu + \mu'\right)}{\mu T_{i'} + \mu'T_i}\left(\frac{n_iZ^2}{T_i} + \frac{n_{i'} Z'^2}{T_{i'}}\right)^{1/2}\right]\]

where like the other expressions the different constant is due to
converting from cgs to SI units: \(29.91 = 23 -
0.5\ln\left(10^{-6}\right)\).

The frequency of charged species a colliding with charged species b is

\[\nu_{ab} = \frac{1}{3\pi^{3/2}\epsilon_0^2}\frac{Z_a^2 Z_b^2 n_b \ln\Lambda}{\left(v_a^2 + v_b^2\right)^{3/2}}\frac{\left(1 + m_a / m_b\right)}{m_a^2}\]

Note that the cgs expression in Hinton is divided by \(\left(4\pi\epsilon_0\right)^2\) to get
the expression in SI units. The thermal speeds in this expression are defined as:

\[v_a^2 = 2 e T_a / m_a\]

Note that with this definition we recover the Braginskii expressions [https://farside.ph.utexas.edu/teaching/plasma/lectures1/node35.html]
for e-i and i-i collision times.

For conservation of momentum, the collision frequencies \(\nu_{ab}\) and \(\nu_{ba}\) are
related by:

\[m_a n_a \nu_{ab} = m_b n_b \nu_{ba}\]

Momentum exchange, force on species a due to collisions with species b:

\[F_{ab} = C_m \nu_{ab} m_a n_a \left(u_b - u_a \right)\]

Where the coefficient \(C_m\) for parallel flows depends on the species: For most combinations
of species this is set to 1, but for electron-ion collisions the Braginskii coefficients are used:
\(C_m = 0.51\) if ion charge \(Z_i = 1\); 0.44 for \(Z_i = 2\); 0.40 for \(Z_i = 3\);
and 0.38 is used for \(Z_i \ge 4\). Note that this coefficient should decline further with
increasing ion charge, tending to 0.29 as \(Z_i \rightarrow \infty\).

Frictional heating is included by default, but can be disabled by
setting the frictional_heating option to false. When enabled it
adds a source of thermal energy corresponding to the resistive heating
term:

\[Q_{ab,F} = \frac{m_b}{m_a + m_b} \left(u_b - u_a \right) F_{ab}\]

This term has some important properties:

	It is always positive: Collisions of two species with the same
temperature never leads to cooling.

	It is Galilean invariant: Shifting both species’ velocity by the
same amount leaves \(Q_{ab,F}\) unchanged.

	If both species have the same mass, the thermal energy
change due to slowing down is shared equally between them.

	If one species is much heavier than the other, for example
electron-ion collisions, the lighter species is preferentially
heated. This recovers e.g. Braginskii expressions for \(Q_{ei}\)
and \(Q_{ie}\).

This can be derived by considering the exchange of energy
\(W_{ab,F}\) between two species at the same temperature but
different velocities. If the pressure is evolved then it contains
a term that balances the change in kinetic energy due to changes
in velocity:

\[\begin{split}\begin{aligned}
\frac{\partial}{\partial t}\left(m_a n_a u_a\right) =& \ldots + F_{ab} \\
\frac{\partial}{\partial t}\left(\frac{3}{2}p_a\right) =& \ldots - F_{ab} u_a + W_{ab, F}
\end{aligned}\end{split}\]

For momentum and energy conservation we must have \(F_{ab}=-F_{ba}\)
and \(W_{ab,F} = -W_{ba,F}\). Comparing the above to the
Braginskii expression [https://farside.ph.utexas.edu/teaching/plasma/lectures/node35.html]
we see that for ion-electron collisions the term \(- F_{ab}u_a + W_{ab, F}\)
goes to zero, so \(W_{ab, F} \sim u_aF_{ab}\) for
\(m_a \gg m_b\). An expression that has all these desired properties
is

\[W_{ab,F} = \left(\frac{m_a u_a + m_b u_a}{m_a + m_b}\right)F_{ab}\]

which is not Galilean invariant but when combined with the \(- F_{ab} u_a\)
term gives a change in pressure that is invariant, as required.

Thermal energy exchange, heat transferred to species \(a\) from
species \(b\) due to temperature differences, is given by:

\[Q_{ab,T} = \nu_{ab}\frac{3n_a m_a\left(T_b - T_a\right)}{m_a + m_b}\]

	Ion-neutral and electron-neutral collisions

The cross-section for elastic collisions between charged and neutral
particles can vary significantly. Here for simplicity we just take
a value of \(5\times 10^{-19}m^2\) from the NRL formulary.

	Neutral-neutral collisions

The cross-section is given by

\[\sigma = \pi \left(\frac{d_1 + d_2}{2}\right)^2\]

where \(d_1\) and \(d_2\) are the kinetic diameters of the two
species. Typical values are [Wikipedia] for H2 2.89e-10m, He
2.60e-10m, Ne 2.75e-10m.

The mean relative velocity of the two species is

\[v_{rel} = \sqrt{\frac{eT_1}{m_1} + \frac{eT_2}{m_2}}\]

and so the collision rate of species 1 on species 2 is:

\[\nu_{12} = v_{rel} n_2 \sigma\]

The implementation is in Collisions:

	
struct Collisions : public Component

	Calculates the collision rate of each species with all other species

Important: Be careful when including both ion_neutral collisions and reactions such as charge exchange, since that may result in double counting. Similarly for electron_neutral collisions and ionization reactions.

Public Functions

	
Collisions(std::string name, Options &alloptions, Solver*)

	
The following boolean options under alloptions[name] control which collisions are calculated:

	electron_electron

	electron_ion

	electron_neutral

	ion_ion

	ion_neutral

	neutral_neutral

There are also switches for other terms:

	frictional_heating Include R dot v heating term as energy source? (includes Ohmic heating)

	Parameters:

	alloptions – Settings, which should include:
	units
	eV

	inv_meters_cubed

	meters

	seconds

	
virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

thermal_force

This implements simple expressions for the thermal force. If the
electron_ion option is true (which is the default), then a momentum
source is added to all ions:

\[F_z = 0.71 n_z Z^2 \nabla_{||}T_e\]

where \(n_z\) is the density of the ions of charge \(Z\). There
is an equal and opposite force on the electrons.

If the ion_ion option is true (the default), then forces are
calculated between light species (atomic mass < 4) and heavy species
(atomic mass > 10). If any combinations of ions are omitted, then a
warning will be printed once.
The force on the heavy ion is:

\[\begin{split}\begin{aligned}
F_z =& \beta \nabla_{||}T_i \\
\beta =& \frac{3\left(\mu + 5\sqrt{2}Z^2\left(1.1\mu^{5/2} - 0.35\mu^{3/2}\right) - 1\right)}{2.6 - 2\mu + 5.4\mu^2} \\
\mu =& m_z / \left(m_z + m_i\right)
\end{aligned}\end{split}\]

where subscripts \(z\) refer to the heavy ion, and \(i\)
refers to the light ion. The force on the light ion fluid is equal and
opposite: \(F_i = -F_z\).

The implementation is in the ThermalForce class:

	
struct ThermalForce : public Component

	Simple calculation of the thermal force

Important: This implements a quite crude approximation, which is intended for initial development and testing. The expressions used are only valid for trace heavy ions and light main ion species, and would not be valid for Helium impurities in a D-T plasma, for example. For this reason only collisions where one ion has an atomic mass < 4, and the other an atomic mass > 10 are considered. Warning messages will be logged for species combinations which are not calculated.

Options used:

	<name>
	electron_ion : bool Include electron-ion collisions?

	ion_ion : bool Include ion-ion elastic collisions?

Public Functions

	
virtual void transform(Options &state) override

	Inputs
	species
	e [if electron_ion true]
	charge

	density

	temperature

	<species>
	charge [Checks, skips species if not set]

	AA

	temperature [If AA < 4 i.e. “light” species]

Outputs
	species
	e
	momentum_source [if electron_ion true]

	<species> [if AA < 4 (“light”) or AA > 10 (“heavy”)]
	momentum_source

recycling

This component calculates the flux of a species into a Y boundary,
due to recycling of flow out of the boundary of another species.

The boundary fluxes might be set by sheath boundary conditions,
which potentially depend on the density and temperature of all species.
Recycling therefore can’t be calculated until all species boundary conditions
have been set. It is therefore expected that this component is a top-level
component which comes after boundary conditions are set.

The recycling component has a species option, that is a list of species
to recycle. For each of the species in that list, recycling will look in
the corresponding section for the options recycle_as, recycle_multiplier
and recycle_energy.

For example, recycling d+ ions into d atoms with a recycling fraction
of 1. Each returning atom has an energy of 3.5eV:

[hermes]
components = d+, d, sheath_boundary, recycling

[recycling]
species = d+ # Comma-separated list of species to recycle

[d+]
recycle_as = d # Species to recycle as
recycle_multiplier = 1 # Recycling fraction
recycle_energy = 3.5 # Energy of recycled particles [eV]

	
struct Recycling : public Component

	Convert fluxes of species at boundaries

Since this must be calculated after boundary fluxes (e.g. sheath), it is included as a top-level component

Public Functions

	
Recycling(std::string name, Options &alloptions, Solver*)

	Inputs

	<name>
	species A comma-separated list of species to recycle

	<species>
	recycle_as The species to recycle into

	recycle_multiplier The recycled flux multiplier, between 0 and 1

	recycle_energy The energy of the recycled particles [eV]

	
virtual void transform(Options &state) override

	Inputs

	species
	<species>
	density

	velocity

Outputs

	species
	<species>
	density_source

Atomic and molecular reactions

The formula for the reaction is used as the name of the component. This
makes writing the input file harder, since the formula must be in the exact same format
(e.g. h + e and e + h won’t be recognised as being the same thing),
but makes reading and understanding the file easier.

To include a set of reactions, it is probably easiest to group them,
and then include the group name in the components list

[hermes]
components = ..., reactions

[reactions]
type = (
 h + e -> h+ + 2e, # ionisation
 h+ + e -> h, # Radiative + 3-body recombination
)

Note that brackets can be used to split the list of reactions over multiple lines,
and trailing commas are ignored. Comments can be used if needed to add explanation.
The name of the section does not need to be reactions, and multiple components could
be created with different reaction sets. Be careful not to include the same reaction
twice.

When reactions are added, all the species involved must be included, or an exception
should be thrown.

Notes:

	Charge exchange channel diagnostics: For two species a and b,
the channel Fab_cx is a source of momentum for species a due to
charge exchange with species b. There are corresponding sinks for
the products of the charge exchange reaction which are not saved.

For example,reaction d + t+ -> d+ + t will save the following
forces (momentum sources):
- Fdt+_cx is a source of momentum for deuterium atoms d and sink of momentum for deuterium ions d+.
- Ft+d_cx is a source of momentum for tritium ions t+ and sink of momentum for tritium atoms t

The reason for this convention is the existence of the inverse reactions:
t + d+ -> t+ + d outputs diagnostics Ftd+_cx and Fd+t_cx.

	Reactions typically convert species from one to another, leading to
a transfer of mass momentum and energy. For a reaction converting
species \(a\) to species \(b\) at rate \(R\) (units
of events per second per volume) we have transfers:

\[\begin{split}\begin{aligned}
\frac{\partial}{\partial t} n_a =& \ldots - R \\
\frac{\partial}{\partial t} n_b =& \ldots + R \\
\frac{\partial}{\partial t}\left(m n_a u_a\right) =& \ldots + F_{ab} \\
\frac{\partial}{\partial t}\left(m n_a u_a\right) =& \ldots + F_{ba} \\
\frac{\partial}{\partial t}\left(\frac{3}{2} p_a \right) =& \ldots - F_{ab}u_a + W_{ab} - \frac{1}{2}mRu_a^2 \\
\frac{\partial}{\partial t}\left(\frac{3}{2} p_b \right) =& \ldots - F_{ba}u_b + W_{ba} + \frac{1}{2}mRu_b^2
\end{aligned}\end{split}\]

where both species have the same mass: \(m_a = m_b = m\). In the
pressure equations the \(-F_{ab}u_a\) comes from splitting the
kinetic and thermal energies; \(W_{ab}=-W_{ba}\) is the energy
transfer term that we need to find; The final term balances the loss
of kinetic energy at fixed momentum due to a particle source or
sink.

The momentum transfer \(F_{ab}=-F{ba}\) is the momentum carried
by the converted ions: \(F_{ab}=-m R u_a\). To find
\(W_{ab}\) we note that for \(p_a = 0\) the change in pressure
must go to zero: \(-F_{ab}u_a + W_{ab} -\frac{1}{2}mRu_a^2 = 0\).

\[\begin{split}\begin{aligned}
W_{ab} =& F_{ab}u_a + \frac{1}{2}mRu_a^2 \\
=& - mR u_a^2 + \frac{1}{2}mRu_a^2\\
=& -\frac{1}{2}mRu_a^2
\end{aligned}\end{split}\]

Substituting into the above gives:

\[\begin{split}\begin{aligned}
\frac{\partial}{\partial t}\left(\frac{3}{2} p_b \right) =& \ldots - F_{ba}u_b + W_{ba} + \frac{1}{2}mRu_b^2 \\
=& \ldots - mRu_au_b + \frac{1}{2}mRu_a^2 + \frac{1}{2}mRu_a^2 \\
=& \ldots + \frac{1}{2}mR\left(u_a - u_b\right)^2
\end{aligned}\end{split}\]

This has the property that the change in pressure of both species is
Galilean invariant. This transfer term is included in the Amjuel reactions
and hydrogen charge exchange.

Hydrogen

Multiple isotopes of hydrogen can be evolved, so to keep track of this the
species labels h, d and t are all handled by the same hydrogen atomic
rates calculation. The following might therefore be used

[hermes]
components = d, t, reactions

[reactions]
type = (
 d + e -> d+ + 2e, # Deuterium ionisation
 t + e -> t+ + 2e, # Tritium ionisation
)

	Reaction

	Description

	h + e -> h+ + 2e

	Hydrogen ionisation (Amjuel 2.1.5)

	d + e -> d+ + 2e

	Deuterium ionisation (Amjuel 2.1.5)

	t + e -> t+ + 2e

	Tritium ionisation (Amjuel 2.1.5)

	h + h+ -> h+ + h

	Hydrogen charge exchange

	d + d+ -> d+ + d

	Deuterium charge exchange

	t + t+ -> t+ + t

	Tritium charge exchange

	h + d+ -> h+ + d

	Mixed hydrogen isotope CX

	d + h+ -> d+ + h

	

	h + t+ -> h+ + t

	

	t + h+ -> t+ + h

	

	d + t+ -> d+ + t

	

	t + d+ -> t+ + d

	

	h+ + e -> h

	Hydrogen recombination (Amjuel 2.1.8)

	d+ + e -> d

	Deuterium recombination (Amjuel 2.1.8)

	t+ + e -> t

	Tritium recombination (Amjuel 2.1.8)

The code to calculate the charge exchange rates is in
hydrogen_charge_exchange.[ch]xx. This implements reaction 3.1.8 from
Amjuel (p43), scaled to different isotope masses and finite neutral
particle temperatures by using the effective temperature (Amjuel p43):

\[T_{eff} = \frac{M}{M_1}T_1 + \frac{M}{M_2}T_2\]

The effective hydrogenic ionisation rates are calculated using Amjuel
reaction 2.1.5, by D.Reiter, K.Sawada and T.Fujimoto (2016).
Effective recombination rates, which combine radiative and 3-body contributions,
are calculated using Amjuel reaction 2.1.8.

	
struct HydrogenChargeExchange : public Component

	Hydrogen charge exchange total rate coefficient

p + H(1s) -> H(1s) + p

Reaction 3.1.8 from Amjuel (p43)

Scaled to different isotope masses and finite neutral particle temperatures by using the effective temperature (Amjuel p43)

T_eff = (M/M_1)T_1 + (M/M_2)T_2

Important: If this is included then ion_neutral collisions should probably be disabled in the collisions component, to avoid double-counting.

Subclassed by HydrogenChargeExchangeIsotope< Isotope1, Isotope2 >

Public Functions

	
inline HydrogenChargeExchange(std::string name, Options &alloptions, Solver*)

	
	Parameters:

	alloptions – Settings, which should include:
	units
	eV

	inv_meters_cubed

	seconds

Helium

	Reaction

	Description

	he + e -> he+ + 2e

	He ionisation, unresolved metastables (Amjuel 2.3.9a)

	he+ + e -> he

	He+ recombination, unresolved metastables (Amjuel 2.3.13a)

The implementation of these rates are in the AmjuelHeIonisation01
and AmjuelHeRecombination10 classes:

	
struct AmjuelHeIonisation01 : public AmjuelReaction

	e + he -> he+ + 2e Amjuel reaction 2.3.9a, page 161 Not resolving metastables, only transporting ground state

Public Functions

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

	
struct AmjuelHeRecombination10 : public AmjuelReaction

	e + he+ -> he Amjuel reaction 2.3.13a Not resolving metastables. Includes radiative + threebody + dielectronic. Fujimoto Formulation II

Public Functions

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

Neon

These rates are taken from ADAS (96): SCD and PLT are used for the ionisation
rate and radiation energy loss; ACD and PRB for the recombination rate and radiation
energy loss; and CCD (89) for the charge exchange coupling to hydrogen.
The ionisation potential is also included as a source or sink of energy
for the electrons.

	Reaction

	Description

	ne + e -> ne+ + 2e

	Neon ionisation

	ne+ + e -> ne+2 + 2e

	

	ne+2 + e -> ne+3 + 2e

	

	ne+3 + e -> ne+4 + 2e

	

	ne+4 + e -> ne+5 + 2e

	

	ne+5 + e -> ne+6 + 2e

	

	ne+6 + e -> ne+7 + 2e

	

	ne+7 + e -> ne+8 + 2e

	

	ne+8 + e -> ne+9 + 2e

	

	ne+9 + e -> ne+10 + 2e

	

	ne+ + e -> ne

	Neon recombination

	ne+2 + e -> ne+

	

	ne+3 + e -> ne+2

	

	ne+4 + e -> ne+3

	

	ne+5 + e -> ne+4

	

	ne+6 + e -> ne+5

	

	ne+7 + e -> ne+6

	

	ne+8 + e -> ne+7

	

	ne+9 + e -> ne+8

	

	ne+10 + e -> ne+9

	

	ne+ + h -> ne + h+

	Charge exchange with hydrogen

	ne+2 + h -> ne+ + h+

	

	ne+3 + h -> ne+2 + h+

	

	ne+4 + h -> ne+3 + h+

	

	ne+5 + h -> ne+4 + h+

	

	ne+6 + h -> ne+5 + h+

	

	ne+7 + h -> ne+6 + h+

	

	ne+8 + h -> ne+7 + h+

	

	ne+9 + h -> ne+8 + h+

	

	ne+10 + h -> ne+9 + h+

	

	ne+ + d -> ne + d+

	Charge exchange with deuterium

	ne+2 + d -> ne+ + d+

	

	ne+3 + d -> ne+2 + d+

	

	ne+4 + d -> ne+3 + d+

	

	ne+5 + d -> ne+4 + d+

	

	ne+6 + d -> ne+5 + d+

	

	ne+7 + d -> ne+6 + d+

	

	ne+8 + d -> ne+7 + d+

	

	ne+9 + d -> ne+8 + d+

	

	ne+10 + d -> ne+9 + d+

	

	ne+ + t -> ne + t+

	Charge exchange with tritium

	ne+2 + t -> ne+ + t+

	

	ne+3 + t -> ne+2 + t+

	

	ne+4 + t -> ne+3 + t+

	

	ne+5 + t -> ne+4 + t+

	

	ne+6 + t -> ne+5 + t+

	

	ne+7 + t -> ne+6 + t+

	

	ne+8 + t -> ne+7 + t+

	

	ne+9 + t -> ne+8 + t+

	

	ne+10 + t -> ne+9 + t+

	

The implementation of these rates is in ADASNeonIonisation,
ADASNeonRecombination and ADASNeonCX template classes:

	
template<int level>
struct ADASNeonIonisation : public OpenADAS

	ADAS effective ionisation (ADF11)

	Template Parameters:

	level – The ionisation level of the ion on the left of the reaction

Public Functions

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

	
template<int level>
struct ADASNeonRecombination : public OpenADAS

	ADAS effective recombination coefficients (ADF11)

	Template Parameters:

	level – The ionisation level of the ion on the right of the reaction

Public Functions

	
inline ADASNeonRecombination(std::string, Options &alloptions, Solver*)

	
	Parameters:

	alloptions – The top-level options. Only uses the [“units”] subsection.

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

	
template<int level, char Hisotope>
struct ADASNeonCX : public OpenADASChargeExchange

	
	Template Parameters:

	
	level – The ionisation level of the ion on the right of the reaction

	Hisotope – The hydrogen isotope (‘h’, ‘d’ or ‘t’)

Public Functions

	
inline ADASNeonCX(std::string, Options &alloptions, Solver*)

	
	Parameters:

	alloptions – The top-level options. Only uses the [“units”] subsection.

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

Fixed fraction radiation

These components produce volumetric electron energy losses, but don’t
otherwise modify the plasma solution: Their charge and mass density
are not calculated, and there are no interactions with other species
or boundary conditions.

The fixed_fraction_carbon component calculates radiation due to carbon
in coronal equilibrium, using a simple formula from I.H.Hutchinson Nucl. Fusion 34 (10) 1337 - 1348 (1994) [https://doi.org/10.1088/0029-5515/34/10/I04]:

\[L\left(T_e\right) = 2\times 10^{-31} \frac{\left(T_e/10\right)^3}{1 + \left(T_e / 10\right)^{4.5}}\]

which has units of \(Wm^3\) with \(T_e\) in eV.

To use this component you can just add it to the list of components and then
configure the impurity fraction:

[hermes]
components = ..., fixed_fraction_carbon, ...

[fixed_fraction_carbon]
fraction = 0.05 # 5% of electron density
diagnose = true # Saves Rfixed_fraction_carbon to output

Or to customise the name of the radiation output diagnostic a section can be
defined like this:

[hermes]
components = ..., c, ...

[c]
type = fixed_fraction_carbon
fraction = 0.05 # 5% of electron density
diagnose = true # Saves Rc (R + section name)

The fixed_fraction_nitrogen component works in the same way, calculating nitrogen
radiation using a formula from Bruce Lipschultz et al 2016 Nucl. Fusion 56 056007 [https://doi.org/10.1088/0029-5515/56/5/056007]:

\[\begin{split}L\left(T_e\right) = \left\{\begin{array}{cl}
5.9\times 10^{-34}\frac{\sqrt{T_e - 1}\left(80 - T_e\right)}{1 + 3.1\times 10^{-3}\left(T_e - 1\right)^2} & \textrm{If $1 < T_e < 80$eV} \\
0 & \textrm{Otherwise}\end{array}\right.\end{split}\]

The fixed_fraction_neon component use a piecewise polynomial fit to the neon
cooling curve (Ryoko 2020 Nov):

\[\begin{split}L\left(T\right) = \left\{\begin{array}{cl}
\sum_{i=0}^5 a_i T_e^i & \textrm{If $3 \le T_e < 100$eV} \\
7\times 10^{-35} \left(T_e - 2\right) + 10^{-35} & \textrm{If $2 \le T_e < 3$eV} \\
10^{-35}\left(T_e - 1\right) & \textrm{If $1 < T_e < 2$eV} \\
0 & \textrm{Otherwise}\end{array}\right.\end{split}\]

where the coefficients of the polynomial fit are \(a_0 =
-3.2798\times 10^{-34}\), \(a_1 = -3.4151\times 10^{-34}\),
\(a_2 = 1.7347\times 10^{-34}\), \(a_3 = -5.119\times
10^{-36}\), \(a_4 = 5.4824\times 10^{-38}\), \(a_5 =
-2.0385\times 10^{-40}\).

The fixed_fraction_argon components uses a piecewise polynomial
fit to the argon cooling curve (Ryoko 2020 Nov):

\[\begin{split}L\left(T\right) = \left\{\begin{array}{cl}
\sum_{i=0}^9 b_i T_e^i & \textrm{If $1.5 \le T_e < 100$eV} \\
5\times 10^{-35} \left(T_e - 1\right) & \textrm{If $1 \le T_e < 1.5$eV} \\
0 & \textrm{Otherwise}\end{array}\right.\end{split}\]

where polynomial coefficients \(b_0\ldots b_9\) are
\(-9.9412e-34\), \(4.9864e-34\), \(1.9958e-34\),
\(8.6011e-35\), \(-8.341e-36\), \(3.2559e-37\),
\(-6.9642e-39\), \(8.8636e-41\), \(-6.7148e-43\),
\(2.8025e-45\), \(-4.9692e-48\).

Electromagnetic fields

These are components which calculate the electric and/or magnetic
fields.

vorticity

Evolves a vorticity equation, and at each call to transform() uses a matrix
inversion to calculate potential from vorticity.

In this component the Boussinesq approximation is made, so the
vorticity equation solved is

\[\nabla\cdot\left(\frac{\overline{A}\overline{n}}{B^2}\nabla_\perp \phi\right) \underbrace{+ \nabla\cdot\left(\sum_i\frac{A_i}{Z_i B^2}\nabla_\perp p_i\right)}_{\mathrm{if diamagnetic_polarisation}} = \Omega\]

Where the sum is over species, \(\overline{A}\) is the average ion
atomic number, and \(\overline{n}\) is the normalisation density
(i.e. goes to 1 in the normalised equations). The ion diamagnetic flow
terms in this Boussinesq approximation can be written in terms of an
effective ion pressure \(\hat{p}\):

\[\hat{p} \equiv \sum_i \frac{A_i}{\overline{A} Z_i} p_i\]

as

\[\nabla\cdot\left[\frac{\overline{A}\overline{n}}{B^2}\nabla_\perp \left(\phi + \frac{\hat{p}}{\overline{n}}\right) \right] = \Omega\]

Note that if diamagnetic_polarisation = false then the ion
pressure terms are removed from the vorticity, and also from other ion
pressure terms coming from the polarisation current
(i.e. \(\hat{p}\rightarrow 0\).

This is a simplified version of the full vorticity definition which is:

\[\nabla\cdot\left(\sum_i \frac{A_i n_i}{B^2}\nabla_\perp \phi + \sum_i \frac{A_i}{Z_i B^2}\nabla_\perp p_i\right) = \Omega\]

and is derived by replacing

\[\sum_i A_i n_i \rightarrow \overline{A}\overline{n}\]

In the case of multiple species, this Boussinesq approximation means that the ion diamagnetic flow
terms

The vorticity equation that is integrated in time is

\[\begin{split}\begin{aligned}\frac{\partial \Omega}{\partial t} =& \nabla\cdot\left(\mathbf{b}\sum_s Z_s n_sV_{||s}\right) \\
&+ \underbrace{\nabla\cdot\left(\nabla\times\frac{\mathbf{b}}{B}\sum_s p_s\right)}_{\textrm{if diamagnetic}} + \underbrace{\nabla\cdot\mathbf{J_{exb}}}_{\mathrm{if exb_advection}} \\
&+ \nabla\cdot\left(\mathbf{b}J_{extra}\right)\end{aligned}\end{split}\]

The nonlinearity \(\nabla\cdot\mathbf{J_{exb}}\) is part of the
divergence of polarisation current. In its simplified form when
exb_advection_simplified = true, this is the \(E\times B\)
advection of vorticity:

\[\nabla\cdot\mathbf{J_{exb}} = -\nabla\cdot\left(\Omega \mathbf{V}_{E\times B}\right)\]

When exb_advection_simplified = false then the more complete
(Boussinesq approximation) form is used:

\[\nabla\cdot\mathbf{J_{exb}} = -\nabla\cdot\left[\frac{\overline{A}}{2B^2}\nabla_\perp\left(\mathbf{V}_{E\times B}\cdot\nabla \hat{p}\right) + \frac{\Omega}{2} \mathbf{V}_{E\times B} + \frac{\overline{A}\overline{n}}{2B^2}\nabla_\perp^2\phi\left(\mathbf{V}_{E\times B} + \frac{\mathbf{b}}{B}\times\nabla\hat{p}\right) \right]\]

The form of the vorticity equation is based on Simakov & Catto [https://doi.org/10.1063/1.1623492] (corrected in erratum 2004 [https://doi.org/10.1063/1.1703527]), in the Boussinesq limit and
with the first term modified to conserve energy. In the limit of zero
ion pressure and constant \(B\) it reduces to the simplified form.

	
struct Vorticity : public Component

	Evolve electron density in time

Public Functions

	
Vorticity(std::string name, Options &options, Solver *solver)

	Options

	<name>
	average_atomic_mass: float, default 2.0 Weighted average ion atomic mass for polarisation current

	bndry_flux: bool, default true Allow flows through radial (X) boundaries?

	collisional_friction: bool, default false Damp vorticity based on mass-weighted collision frequency?

	diagnose: bool, false Output additional diagnostics?

	diamagnetic: bool, default true Include diamagnetic current, using curvature vector?

	diamagnetic_polarisation: bool, default true Include ion diamagnetic drift in polarisation current?

	exb_advection: bool, default true Include ExB advection (nonlinear term)?

	hyper_z: float, default -1.0 Hyper-viscosity in Z. < 0 means off

	laplacian: subsection Options for the Laplacian phi solver

	phi_boundary_relax: bool, default false Relax radial phi boundaries towards zero-gradient?

	phi_boundary_timescale: float, 1e-4 Timescale for phi boundary relaxation [seconds]

	phi_dissipation: bool, default true Parallel dissipation of potential (Recommended)

	poloidal_flows: bool, default true Include poloidal ExB flow?

	sheath_boundary: bool, default false If phi_boundary_relax is false, set the radial boundary to the sheath potential?

	split_n0: bool, default false Split phi into n=0 and n!=0 components?

	viscosity: Field2D, default 0.0 Kinematic viscosity [m^2/s]

	vort_dissipation: bool, default false Parallel dissipation of vorticity?

	
virtual void transform(Options &state) override

	Optional inputs

	species
	pressure and charge => Calculates diamagnetic terms [if diamagnetic=true]

	pressure, charge and mass => Calculates polarisation current terms [if diamagnetic_polarisation=true]

Sets in the state
	species
	[if has pressure and charge]
	energy_source

	fields
	vorticity

	phi Electrostatic potential

	DivJdia Divergence of diamagnetic current [if diamagnetic=true]

Note: Diamagnetic current calculated here, but could be moved to a component with the diamagnetic drift advection terms

	
virtual void finally(const Options &state) override

	Optional inputs
	fields
	DivJextra Divergence of current, including parallel current Not including diamagnetic or polarisation currents

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

	
inline virtual void restartVars(Options &state) override

	Add extra fields to restart files.

relax_potential

This component evolves a vorticity equation, similar to the vorticity component.
Rather than inverting an elliptic equation at every timestep, this component evolves
the potential in time as a diffusion equation.

	
struct RelaxPotential : public Component

	Evolve vorticity and potential in time.

Uses a relaxation method for the potential, which is valid for steady state, but not for timescales shorter than the relaxation timescale.

Public Functions

	
RelaxPotential(std::string name, Options &options, Solver *solver)

	Options

	<name>
	diamagnetic

	diamagnetic_polarisation

	average_atomic_mass

	bndry_flux

	poloidal_flows

	split_n0

	laplacian Options for the Laplacian phi solver

	
virtual void transform(Options &state) override

	Optional inputs

	species
	pressure and charge => Calculates diamagnetic terms [if diamagnetic=true]

	pressure, charge and mass => Calculates polarisation current terms [if diamagnetic_polarisation=true]

Sets in the state
	species
	[if has pressure and charge]
	energy_source

	fields
	vorticity

	phi Electrostatic potential

	DivJdia Divergence of diamagnetic current [if diamagnetic=true]

Note: Diamagnetic current calculated here, but could be moved to a component with the diamagnetic drift advection terms

	
virtual void finally(const Options &state) override

	Optional inputs
	fields
	DivJextra Divergence of current, including parallel current Not including diamagnetic or polarisation currents

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

electromagnetic

This component modifies the definition of momentum of all species, to
include the contribution from the electromagnetic potential
\(A_{||}\).

Assumes that “momentum” \(p_s\) calculated for all species
\(s\) is

\[p_s = m_s n_s v_{||s} + Z_s e n_s A_{||}\]

which arises once the electromagnetic contribution to the force on
each species is included in the momentum equation. This is normalised
so that in dimensionless quantities

\[p_s = A n v_{||} + Z n A_{||}\]

where \(A\) and \(Z\) are the atomic number and charge of the
species.

The current density \(j_{||}\) in SI units is

\[j_{||} = -\frac{1}{\mu_0}\nabla_\perp^2 A_{||}\]

which when normalised in Bohm units becomes

\[j_{||} = - \frac{1}{\beta_{em}}\nabla_\perp^2 A_{||}\]

where \(\beta_{em}\) is a normalisation parameter which is half
the plasma electron beta as normally defined:

\[\beta_{em} = \frac{\mu_0 e \overline{n} \overline{T}}{\overline{B}^2}\]

To convert the species momenta into a current, we take the sum of
\(p_s Z_s e / m_s\). In terms of normalised quantities this gives:

\[- \frac{1}{\beta_{em}} \nabla_\perp^2 A_{||} + \sum_s \frac{Z^2 n_s}{A}A_{||} = \sum_s \frac{Z}{A} p_s\]

	
struct Electromagnetic : public Component

	Electromagnetic potential A||

Reinterprets all species’ parallel momentum as a combination of a parallel flow and a magnetic contribution, i.e. canonical momentum. m n v_{||} + Z e n A_{||}

Changes the “momentum” of each species so that after this component the momentuum of each species is just m n v_{||}

This component should be run after all species have set their momentum, but before the momentum is used e.g to set boundary conditions.

Calculates the electromagnetic potential A_{||} using

Laplace(Apar) - alpha_em * Apar = -Ajpar

By default outputs Apar every timestep. When diagnose = true in also saves alpha_em and Ajpar.

Public Functions

	
Electromagnetic(std::string name, Options &options, Solver *solver)

	Options
	units

	<name>
	diagnose Saves Ajpar and alpha_em time-dependent values

	
virtual void transform(Options &state) override

	Inputs
	species
	<..> All species with charge and parallel momentum
	charge

	momentum

	density

	AA

Sets
	species
	<..> All species with charge and parallel momentum
	momentum (modifies) to m n v||

	velocity (modifies) to v||

	fields
	Apar Electromagnetic potential

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Numerical methods

Parallel dynamics

Dynamics parallel to the magnetic field are solved using a 2nd-order
slope-limiter method. For any number of fluids we solve the number
density \(n\), momentum along the magnetic field,
\(mnv_{||}\), and either pressure \(p\) or energy
\(\mathcal{E}\). Here \(m\) is the particle mass, so that \(mn\)
is the mass density. \(v_{||}\) is the component of the flow
velocity in the direction of the magnetic field, and is aligned with
one of the mesh coordinate directions. All quantities are cell
centered.

Cell edge values are by default reconstructed using a MinMod method
(other limiters are available, including 1st-order upwind, Monotonized
Central, and Superbee). If \(f_i\) is the value of field \(f\) at the
center of cell \(i\), then using MinMod slope limiter the gradient \(g_i\)
inside the cell is:

\[\begin{split}g_i = \left\{\begin{array}{ll}
0 & \textrm{if $\left(f_{i+1} - f_{i}\right) \left(f_{i} - f_{i-1}\right) < 0$} \\
f_{i+1} - f_{i} & \textrm{if $\left|f_{i+1} - f_{i}\right| < \left|f_{i} - f_{i-1}\right|$} \\
f_{i} - f_{i-1} & \textrm{Otherwise}
\end{array}\right.\end{split}\]

The values at the left and right of cell \(i\) are:

\[\begin{split}\begin{align}
f_{i, R} &= f_i + g_i / 2 \nonumber \\
f_{i, L} &= f_i - g_i / 2
\end{align}\end{split}\]

This same reconstruction is performed for \(n\), \(v_{||}\) and \(p\) (or
\(\mathcal{E}\)). The flux \(\Gamma_{i+1/2}\) between cell \(i\) and \(i+1\)
is:

\[\Gamma_{f, i+1/2} = \frac{1}{2}\left(f_{i,R} v_{||i,R} + f_{i+1,L}v_{||i+1,L}\right) + \frac{a_{max,i+1/2}}{2}\left(f_{i,R} - f_{i+1,L}\right)\]

This includes a Lax flux term that penalises jumps across cell edges,
and depends on the maximum local wave speed, \(a_{max}\). Momentum is
not reconstructed at cell edges; Instead the momentum flux is
calculated from the cell edge densities and velocities:

\[\Gamma_{nv, i+1/2} = \frac{1}{2}\left(n_{i,R} v_{||i,R}^2 + n_{i+1,L}v_{||i+1,L}^2\right) + \frac{a_{max,i+1/2}}{2}\left(n_{i,R}v_{||i,R} - n_{i+1,L}v_{||i+1,R}\right)\]

The wave speeds, and so \(a_{max}\), depend on the model being solved,
so can be customised to e.g include or exclude Alfven waves or
electron thermal speed. For simple neutral fluid simulations it is:

\[a_{max, i+1/2} = \max\left(\left|v_{||i}\right|, \left|v_{||i+1}\right|, \sqrt{\frac{\gamma p_{i}}{mn_i}}, \sqrt{\frac{\gamma p_{i+1}}{mn_{i+1}}}\right)\]

The divergence of the flux, and so the rate of change of \(f\) in cell
\(i\), depends on the cell area perpendicular to the flow, \(A_i\), and cell volume \(V_i\):

\[\nabla\cdot\left(\mathbf{b} f v_{||}\right)_{i} = \frac{1}{V_i}\left[\frac{A_{i} + A_{i+1}}{2}\Gamma_{f, i+1/2} - \frac{A_{i-1} + A_{i}}{2}\Gamma_{f, i-1/2}\right]\]

Boundaries

At boundaries along the magnetic field the flow of particles and
energy are set by e.g. Bohm sheath boundary conditions or no-flow
conditions. To ensure that the flux of particles is consistent with
the boundary condition imposed at cell boundaries, fluxes of density
\(n\) and also \(p\) or \(\mathcal{E}\) are set to the simple mid-point
flux:

\[\Gamma_{f, i+1/2}^{boundary} = f_{i+1/2}v_{||i+1/2}\]

where \(f_{i+1/2} = \frac{1}{2}\left(f_{i} + f_{i+1}\right)\) and
\(v_{||i+1/2} = \frac{1}{2}\left(v_{||i} + v_{||i+1}\right)\) are the
mid-point averages where boundary conditions are imposed. It has been
found necessary to include dissipation in the momentum flux at the
boundary, to suppress numerical overshoots due to the narrow boundary
layers that can form:

\[\Gamma_{nv, i+1/2}^{boundary} = n_{i,R}v_{||i,R}v_{||i+1/2} + a_{max}\left[n_{i,R}v_{||i,R} - n_{i+1/2}v_{||i+1/2}\right]\]

where \(n_{i+1/2} = \frac{1}{2}\left(n_{i} + n_{i+1}\right)\).

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | X
 | Z

A

 	
 	ADAS_CARBON_H (C macro)

 	ADAS_NEON_H (C macro)

 	ADAS_REACTION_H (C macro)

 	ADASCarbonCX (C++ struct)

 	ADASCarbonCX::ADASCarbonCX (C++ function)

 	ADASCarbonCX::transform (C++ function)

 	ADASCarbonIonisation (C++ struct)

 	ADASCarbonIonisation::ADASCarbonIonisation (C++ function)

 	ADASCarbonIonisation::transform (C++ function)

 	ADASCarbonRecombination (C++ struct)

 	ADASCarbonRecombination::ADASCarbonRecombination (C++ function)

 	ADASCarbonRecombination::transform (C++ function)

 	ADASNeonCX (C++ struct), [1]

 	ADASNeonCX::ADASNeonCX (C++ function), [1]

 	ADASNeonCX::transform (C++ function), [1]

 	ADASNeonIonisation (C++ struct), [1]

 	ADASNeonIonisation::ADASNeonIonisation (C++ function)

 	ADASNeonIonisation::transform (C++ function), [1]

 	ADASNeonRecombination (C++ struct), [1]

 	ADASNeonRecombination::ADASNeonRecombination (C++ function), [1]

 	ADASNeonRecombination::transform (C++ function), [1]

 	add (C++ function)

 	AMJUEL_HELIUM_H (C macro)

 	AMJUEL_HYD_IONISATION_H (C macro)

 	AMJUEL_HYD_RECOMBINATION_H (C macro)

 	AMJUEL_REACTION_H (C macro)

 	AmjuelHeIonisation01 (C++ struct), [1]

 	AmjuelHeIonisation01::AmjuelHeIonisation01 (C++ function)

 	AmjuelHeIonisation01::calculate_rates (C++ function)

 	AmjuelHeIonisation01::transform (C++ function), [1]

 	AmjuelHeRecombination10 (C++ struct), [1]

 	AmjuelHeRecombination10::AmjuelHeRecombination10 (C++ function)

 	AmjuelHeRecombination10::calculate_rates (C++ function)

 	AmjuelHeRecombination10::transform (C++ function), [1]

 	AmjuelHydIonisation (C++ struct)

 	AmjuelHydIonisation::AmjuelHydIonisation (C++ function)

 	AmjuelHydIonisation::calculate_rates (C++ function)

 	AmjuelHydIonisationIsotope (C++ struct)

 	AmjuelHydIonisationIsotope::AmjuelHydIonisationIsotope (C++ function)

 	AmjuelHydIonisationIsotope::diagnose (C++ member)

 	
 	AmjuelHydIonisationIsotope::E (C++ member)

 	AmjuelHydIonisationIsotope::F (C++ member)

 	AmjuelHydIonisationIsotope::outputVars (C++ function)

 	AmjuelHydIonisationIsotope::R (C++ member)

 	AmjuelHydIonisationIsotope::S (C++ member)

 	AmjuelHydIonisationIsotope::transform (C++ function)

 	AmjuelHydRecombination (C++ struct)

 	AmjuelHydRecombination::AmjuelHydRecombination (C++ function)

 	AmjuelHydRecombination::calculate_rates (C++ function)

 	AmjuelHydRecombinationIsotope (C++ struct)

 	AmjuelHydRecombinationIsotope::AmjuelHydRecombinationIsotope (C++ function)

 	AmjuelHydRecombinationIsotope::diagnose (C++ member)

 	AmjuelHydRecombinationIsotope::E (C++ member)

 	AmjuelHydRecombinationIsotope::F (C++ member)

 	AmjuelHydRecombinationIsotope::outputVars (C++ function)

 	AmjuelHydRecombinationIsotope::R (C++ member)

 	AmjuelHydRecombinationIsotope::S (C++ member)

 	AmjuelHydRecombinationIsotope::transform (C++ function)

 	AmjuelReaction (C++ struct)

 	AmjuelReaction::AmjuelReaction (C++ function)

 	AmjuelReaction::clip (C++ function)

 	AmjuelReaction::electron_reaction (C++ function)

 	AmjuelReaction::evaluate (C++ function)

 	AmjuelReaction::FreqNorm (C++ member)

 	AmjuelReaction::Nnorm (C++ member)

 	AmjuelReaction::Tnorm (C++ member)

 	ANOMALOUS_DIFFUSION_H (C macro)

 	AnomalousDiffusion (C++ struct)

 	AnomalousDiffusion::anomalous_chi (C++ member)

 	AnomalousDiffusion::anomalous_D (C++ member)

 	AnomalousDiffusion::anomalous_nu (C++ member)

 	AnomalousDiffusion::anomalous_sheath_flux (C++ member)

 	AnomalousDiffusion::AnomalousDiffusion (C++ function)

 	AnomalousDiffusion::diagnose (C++ member)

 	AnomalousDiffusion::include_chi (C++ member)

 	AnomalousDiffusion::include_D (C++ member)

 	AnomalousDiffusion::include_nu (C++ member)

 	AnomalousDiffusion::name (C++ member)

 	AnomalousDiffusion::outputVars (C++ function)

 	AnomalousDiffusion::transform (C++ function)

B

 	
 	BOUTMIN (C++ function)

C

 	
 	carbon_ionisation_energy (C++ member)

 	carbon_species_name (C++ member)

 	carbon_species_name<0> (C++ member)

 	carbon_species_name<1> (C++ member)

 	cellAverage (C++ function)

 	cellLeft (C++ function)

 	cellRight (C++ function)

 	clamp (C++ function)

 	Collisions (C++ struct), [1]

 	Collisions::collide (C++ function)

 	Collisions::Collisions (C++ function), [1]

 	Collisions::electron_electron (C++ member)

 	Collisions::electron_ion (C++ member)

 	Collisions::electron_neutral (C++ member)

 	Collisions::frictional_heating (C++ member)

 	Collisions::ion_ion (C++ member)

 	Collisions::ion_neutral (C++ member)

 	Collisions::neutral_neutral (C++ member)

 	Collisions::Nnorm (C++ member)

 	Collisions::Omega_ci (C++ member)

 	Collisions::rho_s0 (C++ member)

 	Collisions::Tnorm (C++ member)

 	Collisions::transform (C++ function), [1]

 	
 	COLLISIONS_H (C macro)

 	Component (C++ struct), [1]

 	Component::create (C++ function), [1]

 	Component::finally (C++ function), [1]

 	Component::outputVars (C++ function), [1]

 	Component::precon (C++ function), [1]

 	Component::restartVars (C++ function), [1]

 	Component::transform (C++ function), [1]

 	Component::~Component (C++ function)

 	COMPONENT_SCHEDULER_H (C macro)

 	ComponentFactory (C++ class)

 	ComponentFactory::default_type (C++ member)

 	ComponentFactory::option_name (C++ member)

 	ComponentFactory::section_name (C++ member)

 	ComponentFactory::type_name (C++ member)

 	ComponentScheduler (C++ class), [1]

 	ComponentScheduler::components (C++ member)

 	ComponentScheduler::ComponentScheduler (C++ function)

 	ComponentScheduler::create (C++ function), [1]

 	ComponentScheduler::outputVars (C++ function), [1]

 	ComponentScheduler::precon (C++ function), [1]

 	ComponentScheduler::restartVars (C++ function), [1]

 	ComponentScheduler::transform (C++ function), [1]

D

 	
 	D4DX4_FV_Index (C++ function), [1]

 	DIAMAGNETIC_DRIFT_H (C macro)

 	DiamagneticDrift (C++ struct), [1]

 	DiamagneticDrift::bndry_flux (C++ member)

 	DiamagneticDrift::Curlb_B (C++ member)

 	DiamagneticDrift::diamag_form (C++ member)

 	
 	DiamagneticDrift::DiamagneticDrift (C++ function)

 	DiamagneticDrift::transform (C++ function), [1]

 	Div_a_Grad_perp_upwind (C++ function), [1]

 	Div_n_bxGrad_f_B_XPPM (C++ function), [1]

 	Div_par_diffusion_index (C++ function), [1]

 	Div_Perp_Lap_FV_Index (C++ function), [1]

E

 	
 	Electromagnetic (C++ struct), [1]

 	Electromagnetic::Ajpar (C++ member)

 	Electromagnetic::alpha_em (C++ member)

 	Electromagnetic::Apar (C++ member)

 	Electromagnetic::aparSolver (C++ member)

 	Electromagnetic::beta_em (C++ member)

 	Electromagnetic::diagnose (C++ member)

 	Electromagnetic::Electromagnetic (C++ function), [1]

 	Electromagnetic::outputVars (C++ function), [1]

 	Electromagnetic::transform (C++ function), [1]

 	ELECTROMAGNETIC_H (C macro)

 	ELECTRON_FORCE_BALANCE (C macro)

 	ELECTRON_VISCOSITY_H (C macro)

 	ElectronForceBalance (C++ struct), [1]

 	ElectronForceBalance::ElectronForceBalance (C++ function)

 	ElectronForceBalance::transform (C++ function), [1]

 	ElectronViscosity (C++ struct), [1]

 	ElectronViscosity::diagnose (C++ member)

 	ElectronViscosity::ElectronViscosity (C++ function), [1]

 	ElectronViscosity::eta_limit_alpha (C++ member)

 	ElectronViscosity::outputVars (C++ function), [1]

 	ElectronViscosity::transform (C++ function), [1]

 	ElectronViscosity::viscosity (C++ member)

 	EVOLVE_DENSITY_H (C macro)

 	EVOLVE_ENERGY_H (C macro)

 	EVOLVE_MOMENTUM_H (C macro)

 	EVOLVE_PRESSURE_H (C macro)

 	EvolveDensity (C++ struct), [1]

 	EvolveDensity::AA (C++ member)

 	EvolveDensity::bndry_flux (C++ member)

 	EvolveDensity::charge (C++ member)

 	EvolveDensity::density_floor (C++ member)

 	EvolveDensity::diagnose (C++ member)

 	EvolveDensity::evolve_log (C++ member)

 	EvolveDensity::EvolveDensity (C++ function), [1]

 	EvolveDensity::finally (C++ function), [1]

 	EvolveDensity::hyper_z (C++ member)

 	EvolveDensity::logN (C++ member)

 	EvolveDensity::low_n_diffuse (C++ member)

 	EvolveDensity::low_n_diffuse_perp (C++ member)

 	EvolveDensity::N (C++ member)

 	EvolveDensity::name (C++ member)

 	EvolveDensity::neumann_boundary_average_z (C++ member)

 	EvolveDensity::outputVars (C++ function), [1]

 	EvolveDensity::poloidal_flows (C++ member)

 	EvolveDensity::Sn (C++ member)

 	EvolveDensity::source (C++ member)

 	EvolveDensity::transform (C++ function), [1]

 	EvolveEnergy (C++ struct), [1]

 	EvolveEnergy::adiabatic_index (C++ member)

 	EvolveEnergy::bndry_flux (C++ member)

 	EvolveEnergy::Cv (C++ member)

 	EvolveEnergy::density_floor (C++ member)

 	EvolveEnergy::diagnose (C++ member)

 	EvolveEnergy::E (C++ member)

 	EvolveEnergy::enable_precon (C++ member)

 	EvolveEnergy::evolve_log (C++ member)

 	EvolveEnergy::EvolveEnergy (C++ function), [1]

 	EvolveEnergy::finally (C++ function), [1]

 	EvolveEnergy::hyper_z (C++ member)

 	
 	EvolveEnergy::kappa_coefficient (C++ member)

 	EvolveEnergy::kappa_limit_alpha (C++ member)

 	EvolveEnergy::kappa_par (C++ member)

 	EvolveEnergy::logE (C++ member)

 	EvolveEnergy::N (C++ member)

 	EvolveEnergy::name (C++ member)

 	EvolveEnergy::neumann_boundary_average_z (C++ member)

 	EvolveEnergy::outputVars (C++ function), [1]

 	EvolveEnergy::P (C++ member)

 	EvolveEnergy::poloidal_flows (C++ member)

 	EvolveEnergy::precon (C++ function), [1]

 	EvolveEnergy::Se (C++ member)

 	EvolveEnergy::source (C++ member)

 	EvolveEnergy::T (C++ member)

 	EvolveEnergy::thermal_conduction (C++ member)

 	EvolveEnergy::transform (C++ function), [1]

 	EvolveMomentum (C++ struct), [1]

 	EvolveMomentum::bndry_flux (C++ member)

 	EvolveMomentum::density_floor (C++ member)

 	EvolveMomentum::diagnose (C++ member)

 	EvolveMomentum::EvolveMomentum (C++ function)

 	EvolveMomentum::finally (C++ function), [1]

 	EvolveMomentum::fix_momentum_boundary_flux (C++ member)

 	EvolveMomentum::hyper_z (C++ member)

 	EvolveMomentum::momentum_source (C++ member)

 	EvolveMomentum::name (C++ member)

 	EvolveMomentum::NV (C++ member)

 	EvolveMomentum::NV_solver (C++ member)

 	EvolveMomentum::outputVars (C++ function), [1]

 	EvolveMomentum::poloidal_flows (C++ member)

 	EvolveMomentum::transform (C++ function), [1]

 	EvolveMomentum::V (C++ member)

 	EvolvePressure (C++ struct), [1]

 	EvolvePressure::bndry_flux (C++ member)

 	EvolvePressure::density_floor (C++ member)

 	EvolvePressure::diagnose (C++ member)

 	EvolvePressure::enable_precon (C++ member)

 	EvolvePressure::evolve_log (C++ member)

 	EvolvePressure::EvolvePressure (C++ function), [1]

 	EvolvePressure::finally (C++ function), [1]

 	EvolvePressure::hyper_z (C++ member)

 	EvolvePressure::kappa_coefficient (C++ member)

 	EvolvePressure::kappa_limit_alpha (C++ member)

 	EvolvePressure::kappa_par (C++ member)

 	EvolvePressure::logP (C++ member)

 	EvolvePressure::low_p_diffuse_perp (C++ member)

 	EvolvePressure::N (C++ member)

 	EvolvePressure::name (C++ member)

 	EvolvePressure::neumann_boundary_average_z (C++ member)

 	EvolvePressure::outputVars (C++ function), [1]

 	EvolvePressure::P (C++ member)

 	EvolvePressure::p_div_v (C++ member)

 	EvolvePressure::poloidal_flows (C++ member)

 	EvolvePressure::precon (C++ function), [1]

 	EvolvePressure::pressure_floor (C++ member)

 	EvolvePressure::source (C++ member)

 	EvolvePressure::Sp (C++ member)

 	EvolvePressure::T (C++ member)

 	EvolvePressure::thermal_conduction (C++ member)

 	EvolvePressure::transform (C++ function), [1]

F

 	
 	firstArg (C++ function)

 	FIXED_DENSITY_H (C macro)

 	FIXED_FRACTION_IONS_H (C macro)

 	FIXED_FRACTION_RADIATION_H (C macro)

 	FIXED_TEMPERATURE_H (C macro)

 	FIXED_VELOCITY_H (C macro)

 	FixedDensity (C++ struct), [1]

 	FixedDensity::AA (C++ member)

 	FixedDensity::charge (C++ member)

 	FixedDensity::FixedDensity (C++ function), [1]

 	FixedDensity::N (C++ member)

 	FixedDensity::name (C++ member)

 	FixedDensity::outputVars (C++ function), [1]

 	FixedDensity::transform (C++ function), [1]

 	FixedFractionIons (C++ struct)

 	FixedFractionIons::FixedFractionIons (C++ function)

 	FixedFractionIons::fractions (C++ member)

 	FixedFractionIons::transform (C++ function)

 	FixedFractionRadiation (C++ struct)

 	FixedFractionRadiation::cooling (C++ member)

 	FixedFractionRadiation::diagnose (C++ member)

 	FixedFractionRadiation::FixedFractionRadiation (C++ function)

 	FixedFractionRadiation::fraction (C++ member)

 	FixedFractionRadiation::FreqNorm (C++ member)

 	FixedFractionRadiation::name (C++ member)

 	FixedFractionRadiation::Nnorm (C++ member)

 	
 	FixedFractionRadiation::outputVars (C++ function)

 	FixedFractionRadiation::radiation (C++ member)

 	FixedFractionRadiation::Tnorm (C++ member)

 	FixedFractionRadiation::transform (C++ function)

 	FixedTemperature (C++ struct), [1]

 	FixedTemperature::diagnose (C++ member)

 	FixedTemperature::FixedTemperature (C++ function), [1]

 	FixedTemperature::name (C++ member)

 	FixedTemperature::outputVars (C++ function), [1]

 	FixedTemperature::P (C++ member)

 	FixedTemperature::T (C++ member)

 	FixedTemperature::transform (C++ function), [1]

 	FixedVelocity (C++ struct), [1]

 	FixedVelocity::FixedVelocity (C++ function)

 	FixedVelocity::name (C++ member)

 	FixedVelocity::outputVars (C++ function), [1]

 	FixedVelocity::transform (C++ function), [1]

 	FixedVelocity::V (C++ member)

 	floor (C++ function)

 	Fromm (C++ function)

 	FULL_VELOCITY_H (C macro)

 	FV (C++ type)

 	FV::Div_par_fvv (C++ function)

 	FV::Div_par_mod (C++ function)

 	FV::Superbee (C++ struct)

 	FV::Superbee::operator() (C++ function)

G

 	
 	get (C++ function)

 	GET_NOBOUNDARY (C macro)

 	
 	GET_VALUE (C macro)

 	getNoBoundary (C++ function)

 	getNonFinal (C++ function)

H

 	
 	he01_radiation_coefs (C++ member)

 	he01_rate_coefs (C++ member)

 	he10_radiation_coefs (C++ member)

 	he10_rate_coefs (C++ member)

 	HERMES_COMPONENT_H (C macro)

 	HERMES_UTILS_H (C macro)

 	hermesDataInvalid (C++ function), [1]

 	HutchinsonCarbonRadiation (C++ class)

 	HutchinsonCarbonRadiation::power (C++ function)

 	HYDROGEN_CHARGE_EXCHANGE_H (C macro)

 	HydrogenChargeExchange (C++ struct), [1]

 	HydrogenChargeExchange::calculate_rates (C++ function)

 	HydrogenChargeExchange::FreqNorm (C++ member)

 	HydrogenChargeExchange::HydrogenChargeExchange (C++ function), [1]

 	HydrogenChargeExchange::Nnorm (C++ member)

 	HydrogenChargeExchange::Tnorm (C++ member)

 	
 	HydrogenChargeExchangeIsotope (C++ struct)

 	HydrogenChargeExchangeIsotope::diagnose (C++ member)

 	HydrogenChargeExchangeIsotope::E (C++ member)

 	HydrogenChargeExchangeIsotope::E2 (C++ member)

 	HydrogenChargeExchangeIsotope::F (C++ member)

 	HydrogenChargeExchangeIsotope::F2 (C++ member)

 	HydrogenChargeExchangeIsotope::HydrogenChargeExchangeIsotope (C++ function)

 	HydrogenChargeExchangeIsotope::outputVars (C++ function)

 	HydrogenChargeExchangeIsotope::S (C++ member)

 	HydrogenChargeExchangeIsotope::transform (C++ function)

 	HydrogenRadiatedPower (C++ class)

 	HydrogenRadiatedPower::chargeExchange (C++ function)

 	HydrogenRadiatedPower::excitation (C++ function)

 	HydrogenRadiatedPower::ionisation (C++ function)

 	HydrogenRadiatedPower::power (C++ function)

 	HydrogenRadiatedPower::recombination (C++ function)

I

 	
 	indexAt (C++ function)

 	INTEGRATE_H (C macro)

 	InterpRadiatedPower (C++ class)

 	InterpRadiatedPower::InterpRadiatedPower (C++ function)

 	InterpRadiatedPower::p_array (C++ member)

 	InterpRadiatedPower::power (C++ function)

 	InterpRadiatedPower::te_array (C++ member)

 	ION_VISCOSITY_H (C macro)

 	Ionisation (C++ class)

 	Ionisation::atomic_rates (C++ member)

 	Ionisation::Eionize (C++ member)

 	Ionisation::FreqNorm (C++ member)

 	Ionisation::Ionisation (C++ function)

 	Ionisation::Nnorm (C++ member)

 	Ionisation::Tnorm (C++ member)

 	Ionisation::transform (C++ function)

 	IONISATION_H (C macro)

 	IonViscosity (C++ struct), [1]

 	IonViscosity::Curlb_B (C++ member)

 	IonViscosity::diagnose (C++ member)

 	IonViscosity::diagnostics (C++ member)

 	
 	IonViscosity::Diagnostics (C++ struct)

 	IonViscosity::Diagnostics::Pi_cipar (C++ member)

 	IonViscosity::Diagnostics::Pi_ciperp (C++ member)

 	IonViscosity::eta_limit_alpha (C++ member)

 	IonViscosity::IonViscosity (C++ function), [1]

 	IonViscosity::outputVars (C++ function), [1]

 	IonViscosity::perpendicular (C++ member)

 	IonViscosity::transform (C++ function), [1]

 	IS_SET (C macro)

 	IS_SET_NOBOUNDARY (C macro)

 	Isothermal (C++ struct), [1]

 	Isothermal::diagnose (C++ member)

 	Isothermal::Isothermal (C++ function)

 	Isothermal::name (C++ member)

 	Isothermal::outputVars (C++ function), [1]

 	Isothermal::P (C++ member)

 	Isothermal::T (C++ member)

 	Isothermal::transform (C++ function), [1]

 	ISOTHERMAL_H (C macro)

 	isSetFinal (C++ function), [1]

 	isSetFinalNoBoundary (C++ function), [1]

L

 	
 	Laplace_FV (C++ function), [1]

 	
 	LoadMetric (C++ function), [1]

M

 	
 	MC (C++ function)

 	
 	MinMod (C++ function)

 	minmod (C++ function), [1]

N

 	
 	neon_ionisation_energy (C++ member)

 	neon_species_name (C++ member)

 	neon_species_name<0> (C++ member)

 	neon_species_name<10> (C++ member)

 	neon_species_name<1> (C++ member)

 	NEUTRAL_BOUNDARY_H (C macro)

 	NEUTRAL_MIXED_H (C macro)

 	NEUTRAL_PARALLEL_DIFFUSION_H (C macro)

 	NeutralBoundary (C++ struct), [1]

 	NeutralBoundary::gamma_heat (C++ member)

 	NeutralBoundary::lower_y (C++ member)

 	NeutralBoundary::name (C++ member)

 	NeutralBoundary::NeutralBoundary (C++ function)

 	NeutralBoundary::transform (C++ function), [1]

 	NeutralBoundary::upper_y (C++ member)

 	NeutralFullVelocity (C++ struct)

 	NeutralFullVelocity::AA (C++ member)

 	NeutralFullVelocity::coord (C++ member)

 	NeutralFullVelocity::DivV2D (C++ member)

 	NeutralFullVelocity::finally (C++ function)

 	NeutralFullVelocity::gamma_ratio (C++ member)

 	NeutralFullVelocity::name (C++ member)

 	NeutralFullVelocity::neutral_bulk (C++ member)

 	NeutralFullVelocity::neutral_conduction (C++ member)

 	NeutralFullVelocity::neutral_gamma (C++ member)

 	NeutralFullVelocity::neutral_viscosity (C++ member)

 	NeutralFullVelocity::NeutralFullVelocity (C++ function)

 	NeutralFullVelocity::Nn2D (C++ member)

 	NeutralFullVelocity::outflow_ydown (C++ member)

 	NeutralFullVelocity::outputVars (C++ function)

 	NeutralFullVelocity::Pn2D (C++ member)

 	NeutralFullVelocity::Tn2D (C++ member)

 	NeutralFullVelocity::Tnorm (C++ member)

 	NeutralFullVelocity::transform (C++ function)

 	NeutralFullVelocity::Txr (C++ member)

 	NeutralFullVelocity::Txz (C++ member)

 	NeutralFullVelocity::Tyr (C++ member)

 	NeutralFullVelocity::Tyz (C++ member)

 	NeutralFullVelocity::Urx (C++ member)

 	NeutralFullVelocity::Ury (C++ member)

 	NeutralFullVelocity::Uzx (C++ member)

 	NeutralFullVelocity::Uzy (C++ member)

 	NeutralFullVelocity::Vn2D (C++ member)

 	NeutralMixed (C++ struct)

 	NeutralMixed::AA (C++ member)

 	NeutralMixed::density_source (C++ member)

 	NeutralMixed::diagnose (C++ member)

 	
 	NeutralMixed::diffusion_limit (C++ member)

 	NeutralMixed::Dnn (C++ member)

 	NeutralMixed::finally (C++ function)

 	NeutralMixed::flux_limit (C++ member)

 	NeutralMixed::inv (C++ member)

 	NeutralMixed::name (C++ member)

 	NeutralMixed::neutral_viscosity (C++ member)

 	NeutralMixed::NeutralMixed (C++ function)

 	NeutralMixed::Nn (C++ member)

 	NeutralMixed::nn_floor (C++ member)

 	NeutralMixed::Nnlim (C++ member)

 	NeutralMixed::NVn (C++ member)

 	NeutralMixed::output_ddt (C++ member)

 	NeutralMixed::outputVars (C++ function)

 	NeutralMixed::Pn (C++ member)

 	NeutralMixed::Pnlim (C++ member)

 	NeutralMixed::precon (C++ function)

 	NeutralMixed::precondition (C++ member)

 	NeutralMixed::pressure_source (C++ member)

 	NeutralMixed::sheath_ydown (C++ member)

 	NeutralMixed::sheath_yup (C++ member)

 	NeutralMixed::Sn (C++ member)

 	NeutralMixed::Snv (C++ member)

 	NeutralMixed::Sp (C++ member)

 	NeutralMixed::Tn (C++ member)

 	NeutralMixed::transform (C++ function)

 	NeutralMixed::Vn (C++ member)

 	NeutralMixed::Vnlim (C++ member)

 	NeutralParallelDiffusion (C++ struct), [1]

 	NeutralParallelDiffusion::diagnose (C++ member)

 	NeutralParallelDiffusion::diagnostics (C++ member)

 	NeutralParallelDiffusion::Diagnostics (C++ struct)

 	NeutralParallelDiffusion::Diagnostics::Dn (C++ member)

 	NeutralParallelDiffusion::Diagnostics::E (C++ member)

 	NeutralParallelDiffusion::Diagnostics::F (C++ member)

 	NeutralParallelDiffusion::Diagnostics::S (C++ member)

 	NeutralParallelDiffusion::dneut (C++ member)

 	NeutralParallelDiffusion::NeutralParallelDiffusion (C++ function)

 	NeutralParallelDiffusion::outputVars (C++ function), [1]

 	NeutralParallelDiffusion::transform (C++ function), [1]

 	NOFLOW_BOUNDARY_H (C macro)

 	NoFlowBoundary (C++ struct), [1]

 	NoFlowBoundary::name (C++ member)

 	NoFlowBoundary::noflow_lower_y (C++ member)

 	NoFlowBoundary::noflow_upper_y (C++ member)

 	NoFlowBoundary::NoFlowBoundary (C++ function)

 	NoFlowBoundary::transform (C++ function), [1]

O

 	
 	OpenADAS (C++ struct)

 	OpenADAS::calculate_rates (C++ function)

 	OpenADAS::electron_heating (C++ member)

 	OpenADAS::FreqNorm (C++ member)

 	OpenADAS::Nnorm (C++ member)

 	OpenADAS::OpenADAS (C++ function)

 	OpenADAS::radiation_coef (C++ member)

 	OpenADAS::rate_coef (C++ member)

 	OpenADAS::Tnorm (C++ member)

 	OpenADASChargeExchange (C++ struct)

 	OpenADASChargeExchange::calculate_rates (C++ function)

 	OpenADASChargeExchange::FreqNorm (C++ member)

 	OpenADASChargeExchange::Nnorm (C++ member)

 	
 	OpenADASChargeExchange::OpenADASChargeExchange (C++ function)

 	OpenADASChargeExchange::rate_coef (C++ member)

 	OpenADASChargeExchange::Tnorm (C++ member)

 	OpenADASRateCoefficient (C++ struct)

 	OpenADASRateCoefficient::evaluate (C++ function)

 	OpenADASRateCoefficient::log_coeff (C++ member)

 	OpenADASRateCoefficient::log_density (C++ member)

 	OpenADASRateCoefficient::log_temperature (C++ member)

 	OpenADASRateCoefficient::nmax (C++ member)

 	OpenADASRateCoefficient::nmin (C++ member)

 	OpenADASRateCoefficient::OpenADASRateCoefficient (C++ function)

 	OpenADASRateCoefficient::Tmax (C++ member)

 	OpenADASRateCoefficient::Tmin (C++ member)

P

 	
 	POLARISATION_DRIFT_H (C macro)

 	PolarisationDrift (C++ struct), [1]

 	PolarisationDrift::average_atomic_mass (C++ member)

 	PolarisationDrift::boussinesq (C++ member)

 	PolarisationDrift::Bsq (C++ member)

 	PolarisationDrift::density_floor (C++ member)

 	
 	PolarisationDrift::diagnose (C++ member)

 	PolarisationDrift::DivJ (C++ member)

 	PolarisationDrift::outputVars (C++ function), [1]

 	PolarisationDrift::phi_pol (C++ member)

 	PolarisationDrift::phiSolver (C++ member)

 	PolarisationDrift::PolarisationDrift (C++ function)

 	PolarisationDrift::transform (C++ function), [1]

Q

 	
 	QUASINEUTRAL (C macro)

 	Quasineutral (C++ struct)

 	Quasineutral::AA (C++ member)

 	Quasineutral::charge (C++ member)

 	Quasineutral::density (C++ member)

 	
 	Quasineutral::finally (C++ function)

 	Quasineutral::name (C++ member)

 	Quasineutral::outputVars (C++ function)

 	Quasineutral::Quasineutral (C++ function)

 	Quasineutral::transform (C++ function)

R

 	
 	RadiatedPower (C++ class)

 	RadiatedPower::power (C++ function), [1]

 	radiation_coefs (C++ member), [1]

 	rate_coefs (C++ member), [1]

 	Recycling (C++ struct), [1]

 	Recycling::channels (C++ member)

 	Recycling::RecycleChannel (C++ struct)

 	Recycling::RecycleChannel::energy (C++ member)

 	Recycling::RecycleChannel::from (C++ member)

 	Recycling::RecycleChannel::multiplier (C++ member)

 	Recycling::RecycleChannel::to (C++ member)

 	Recycling::Recycling (C++ function), [1]

 	Recycling::transform (C++ function), [1]

 	RECYCLING_H (C macro)

 	RegisterComponent (C++ type)

 	RELAX_POTENTIAL_H (C macro)

 	RelaxPotential (C++ struct), [1]

 	RelaxPotential::average_atomic_mass (C++ member)

 	
 	RelaxPotential::bndry_flux (C++ member)

 	RelaxPotential::boussinesq (C++ member)

 	RelaxPotential::Bsq (C++ member)

 	RelaxPotential::Curlb_B (C++ member)

 	RelaxPotential::diamagnetic (C++ member)

 	RelaxPotential::diamagnetic_polarisation (C++ member)

 	RelaxPotential::exb_advection (C++ member)

 	RelaxPotential::finally (C++ function), [1]

 	RelaxPotential::lambda_1 (C++ member)

 	RelaxPotential::lambda_2 (C++ member)

 	RelaxPotential::outputVars (C++ function), [1]

 	RelaxPotential::phi (C++ member)

 	RelaxPotential::phi1 (C++ member)

 	RelaxPotential::poloidal_flows (C++ member)

 	RelaxPotential::RelaxPotential (C++ function), [1]

 	RelaxPotential::sheath_boundary (C++ member)

 	RelaxPotential::transform (C++ function), [1]

 	RelaxPotential::Vort (C++ member)

S

 	
 	SCALE_TIMEDERIVS_H (C macro)

 	ScaleTimeDerivs (C++ struct)

 	ScaleTimeDerivs::outputVars (C++ function)

 	ScaleTimeDerivs::ScaleTimeDerivs (C++ function)

 	ScaleTimeDerivs::scaling (C++ member)

 	ScaleTimeDerivs::transform (C++ function)

 	set (C++ function)

 	SET_TEMPERATURE_H (C macro)

 	set_with_attrs (C++ function)

 	setBoundary (C++ function)

 	SetTemperature (C++ struct)

 	SetTemperature::diagnose (C++ member)

 	SetTemperature::name (C++ member)

 	SetTemperature::outputVars (C++ function)

 	SetTemperature::SetTemperature (C++ function)

 	SetTemperature::T (C++ member)

 	SetTemperature::temperature_from (C++ member)

 	SetTemperature::transform (C++ function)

 	SHEATH_BOUNDARY_H (C macro)

 	SHEATH_BOUNDARY_INSULATING_H (C macro)

 	SHEATH_BOUNDARY_SIMPLE_H (C macro)

 	SHEATH_CLOSURE_H (C macro)

 	SheathBoundary (C++ struct)

 	SheathBoundary::always_set_phi (C++ member)

 	SheathBoundary::floor_potential (C++ member)

 	SheathBoundary::Ge (C++ member)

 	SheathBoundary::lower_y (C++ member)

 	SheathBoundary::SheathBoundary (C++ function)

 	SheathBoundary::sin_alpha (C++ member)

 	SheathBoundary::transform (C++ function)

 	SheathBoundary::upper_y (C++ member)

 	SheathBoundary::wall_potential (C++ member)

 	SheathBoundaryInsulating (C++ struct)

 	SheathBoundaryInsulating::gamma_e (C++ member)

 	SheathBoundaryInsulating::Ge (C++ member)

 	SheathBoundaryInsulating::lower_y (C++ member)

 	SheathBoundaryInsulating::SheathBoundaryInsulating (C++ function)

 	SheathBoundaryInsulating::sin_alpha (C++ member)

 	SheathBoundaryInsulating::transform (C++ function)

 	SheathBoundaryInsulating::upper_y (C++ member)

 	SheathBoundarySimple (C++ struct)

 	SheathBoundarySimple::always_set_phi (C++ member)

 	SheathBoundarySimple::gamma_e (C++ member)

 	SheathBoundarySimple::gamma_i (C++ member)

 	SheathBoundarySimple::Ge (C++ member)

 	SheathBoundarySimple::lower_y (C++ member)

 	SheathBoundarySimple::sheath_ion_polytropic (C++ member)

 	SheathBoundarySimple::SheathBoundarySimple (C++ function)

 	SheathBoundarySimple::sin_alpha (C++ member)

 	SheathBoundarySimple::transform (C++ function)

 	SheathBoundarySimple::upper_y (C++ member)

 	SheathBoundarySimple::wall_potential (C++ member)

 	SheathClosure (C++ struct)

 	SheathClosure::L_par (C++ member)

 	SheathClosure::offset (C++ member)

 	SheathClosure::sheath_gamma (C++ member)

 	
 	SheathClosure::sheath_gamma_ions (C++ member)

 	SheathClosure::SheathClosure (C++ function)

 	SheathClosure::sinks (C++ member)

 	SheathClosure::transform (C++ function)

 	SIMPLE_CONDUCTION_H (C macro)

 	SimpleConduction (C++ struct), [1]

 	SimpleConduction::boundary_flux (C++ member)

 	SimpleConduction::density (C++ member)

 	SimpleConduction::kappa0 (C++ member)

 	SimpleConduction::name (C++ member)

 	SimpleConduction::Nnorm (C++ member)

 	SimpleConduction::SimpleConduction (C++ function)

 	SimpleConduction::temperature (C++ member)

 	SimpleConduction::Tnorm (C++ member)

 	SimpleConduction::transform (C++ function), [1]

 	SNB_CONDUCTION_H (C macro)

 	SNBConduction (C++ struct), [1]

 	SNBConduction::diagnose (C++ member)

 	SNBConduction::Div_Q_SH (C++ member)

 	SNBConduction::Div_Q_SNB (C++ member)

 	SNBConduction::outputVars (C++ function), [1]

 	SNBConduction::snb (C++ member)

 	SNBConduction::SNBConduction (C++ function), [1]

 	SNBConduction::transform (C++ function), [1]

 	SOLKIT_HYDROGEN_CHARGE_EXCHANGE_H (C macro)

 	SOLKIT_NEUTRAL_PARALLEL_DIFFUSION_H (C macro)

 	SOLKITHydrogenChargeExchange (C++ struct)

 	SOLKITHydrogenChargeExchange::calculate_rates (C++ function)

 	SOLKITHydrogenChargeExchange::Nnorm (C++ member)

 	SOLKITHydrogenChargeExchange::rho_s0 (C++ member)

 	SOLKITHydrogenChargeExchange::SOLKITHydrogenChargeExchange (C++ function)

 	SOLKITHydrogenChargeExchangeIsotope (C++ struct)

 	SOLKITHydrogenChargeExchangeIsotope::SOLKITHydrogenChargeExchangeIsotope (C++ function)

 	SOLKITHydrogenChargeExchangeIsotope::transform (C++ function)

 	SOLKITNeutralParallelDiffusion (C++ struct)

 	SOLKITNeutralParallelDiffusion::area_norm (C++ member)

 	SOLKITNeutralParallelDiffusion::neutral_temperature (C++ member)

 	SOLKITNeutralParallelDiffusion::SOLKITNeutralParallelDiffusion (C++ function)

 	SOLKITNeutralParallelDiffusion::transform (C++ function)

 	SOUND_SPEED_H (C macro)

 	SoundSpeed (C++ struct)

 	SoundSpeed::alfven_wave (C++ member)

 	SoundSpeed::beta_norm (C++ member)

 	SoundSpeed::electron_dynamics (C++ member)

 	SoundSpeed::SoundSpeed (C++ function)

 	SoundSpeed::temperature_floor (C++ member)

 	SoundSpeed::transform (C++ function)

 	Stencil1D (C++ struct)

 	Stencil1D::c (C++ member)

 	Stencil1D::L (C++ member)

 	Stencil1D::m (C++ member)

 	Stencil1D::mm (C++ member)

 	Stencil1D::p (C++ member)

 	Stencil1D::pp (C++ member)

 	Stencil1D::R (C++ member)

 	subtract (C++ function)

T

 	
 	THERMAL_FORCE_H (C macro)

 	ThermalForce (C++ struct), [1]

 	ThermalForce::electron_ion (C++ member)

 	ThermalForce::first_time (C++ member)

 	ThermalForce::ion_ion (C++ member)

 	ThermalForce::ThermalForce (C++ function)

 	ThermalForce::transform (C++ function), [1]

 	
 	TOSTRING (C macro)

 	TOSTRING_ (C macro)

 	Transform (C++ struct)

 	Transform::Transform (C++ function)

 	Transform::transform (C++ function)

 	Transform::transforms (C++ member)

 	TRANSFORM_H (C macro)

U

 	
 	UpdatedRadiatedPower (C++ class)

 	UpdatedRadiatedPower::chargeExchange (C++ function)

 	UpdatedRadiatedPower::excitation (C++ function)

 	UpdatedRadiatedPower::ionisation (C++ function)

 	UpdatedRadiatedPower::power (C++ function)

 	UpdatedRadiatedPower::recombination (C++ function)

 	UPSTREAM_DENSITY_FEEDBACK_H (C macro)

 	UpstreamDensityFeedback (C++ struct), [1]

 	UpstreamDensityFeedback::density_controller_i (C++ member)

 	UpstreamDensityFeedback::density_controller_p (C++ member)

 	UpstreamDensityFeedback::density_error_integral (C++ member)

 	UpstreamDensityFeedback::density_error_last (C++ member)

 	UpstreamDensityFeedback::density_error_lasttime (C++ member)

 	UpstreamDensityFeedback::density_integral_positive (C++ member)

 	
 	UpstreamDensityFeedback::density_source_positive (C++ member)

 	UpstreamDensityFeedback::density_source_shape (C++ member)

 	UpstreamDensityFeedback::density_upstream (C++ member)

 	UpstreamDensityFeedback::diagnose (C++ member)

 	UpstreamDensityFeedback::error (C++ member)

 	UpstreamDensityFeedback::integral_term (C++ member)

 	UpstreamDensityFeedback::name (C++ member)

 	UpstreamDensityFeedback::outputVars (C++ function), [1]

 	UpstreamDensityFeedback::proportional_term (C++ member)

 	UpstreamDensityFeedback::restartVars (C++ function), [1]

 	UpstreamDensityFeedback::source_multiplier (C++ member)

 	UpstreamDensityFeedback::transform (C++ function), [1]

 	UpstreamDensityFeedback::UpstreamDensityFeedback (C++ function), [1]

 	Upwind (C++ function)

V

 	
 	Vorticity (C++ struct), [1]

 	Vorticity::average_atomic_mass (C++ member)

 	Vorticity::bndry_flux (C++ member)

 	Vorticity::Bsq (C++ member)

 	Vorticity::collisional_friction (C++ member)

 	Vorticity::Curlb_B (C++ member)

 	Vorticity::diagnose (C++ member)

 	Vorticity::diamagnetic (C++ member)

 	Vorticity::diamagnetic_polarisation (C++ member)

 	Vorticity::DivJcol (C++ member)

 	Vorticity::DivJdia (C++ member)

 	Vorticity::exb_advection (C++ member)

 	Vorticity::exb_advection_simplified (C++ member)

 	Vorticity::finally (C++ function), [1]

 	Vorticity::hyper_z (C++ member)

 	Vorticity::laplacexy (C++ member)

 	Vorticity::outputVars (C++ function), [1]

 	
 	Vorticity::phi (C++ member)

 	Vorticity::phi_boundary_last_update (C++ member)

 	Vorticity::phi_boundary_relax (C++ member)

 	Vorticity::phi_boundary_timescale (C++ member)

 	Vorticity::phi_dissipation (C++ member)

 	Vorticity::phi_sheath_dissipation (C++ member)

 	Vorticity::phiSolver (C++ member)

 	Vorticity::Pi_hat (C++ member)

 	Vorticity::poloidal_flows (C++ member)

 	Vorticity::restartVars (C++ function), [1]

 	Vorticity::sheath_boundary (C++ member)

 	Vorticity::split_n0 (C++ member)

 	Vorticity::transform (C++ function), [1]

 	Vorticity::viscosity (C++ member)

 	Vorticity::Vort (C++ member)

 	Vorticity::vort_dissipation (C++ member)

 	Vorticity::Vorticity (C++ function), [1]

 	VORTICITY_H (C macro)

X

 	
 	XPPM (C++ function)

Z

 	
 	ZERO_CURRENT (C macro)

 	ZeroCurrent (C++ struct)

 	ZeroCurrent::charge (C++ member)

 	ZeroCurrent::finally (C++ function)

 	
 	ZeroCurrent::name (C++ member)

 	ZeroCurrent::outputVars (C++ function)

 	ZeroCurrent::transform (C++ function)

 	ZeroCurrent::velocity (C++ member)

 	ZeroCurrent::ZeroCurrent (C++ function)

File list

	File adas_carbon.hxx

	File adas_neon.hxx

	File adas_reaction.cxx

	File adas_reaction.hxx

	File amjuel_helium.cxx

	File amjuel_helium.hxx

	File amjuel_hyd_ionisation.cxx

	File amjuel_hyd_ionisation.hxx

	File amjuel_hyd_recombination.cxx

	File amjuel_hyd_recombination.hxx

	File amjuel_reaction.hxx

	File anomalous_diffusion.cxx

	File anomalous_diffusion.hxx

	File collisions.cxx

	File collisions.hxx

	File component.cxx

	File component.hxx

	File component_scheduler.cxx

	File component_scheduler.hxx

	File diamagnetic_drift.cxx

	File diamagnetic_drift.hxx

	File div_ops.cxx

	File div_ops.hxx

	File electromagnetic.cxx

	File electromagnetic.hxx

	File electron_force_balance.cxx

	File electron_force_balance.hxx

	File electron_viscosity.cxx

	File electron_viscosity.hxx

	File evolve_density.cxx

	File evolve_density.hxx

	File evolve_energy.cxx

	File evolve_energy.hxx

	File evolve_momentum.cxx

	File evolve_momentum.hxx

	File evolve_pressure.cxx

	File evolve_pressure.hxx

	File fixed_density.hxx

	File fixed_fraction_ions.cxx

	File fixed_fraction_ions.hxx

	File fixed_fraction_radiation.hxx

	File fixed_temperature.hxx

	File fixed_velocity.hxx

	File full_velocity.cxx

	File full_velocity.hxx

	File hermes_utils.hxx

	File hydrogen_charge_exchange.cxx

	File hydrogen_charge_exchange.hxx

	File integrate.hxx

	File ion_viscosity.cxx

	File ion_viscosity.hxx

	File ionisation.cxx

	File ionisation.hxx

	File isothermal.cxx

	File isothermal.hxx

	File loadmetric.cxx

	File loadmetric.hxx

	File neutral_boundary.cxx

	File neutral_boundary.hxx

	File neutral_mixed.cxx

	File neutral_mixed.hxx

	File neutral_parallel_diffusion.cxx

	File neutral_parallel_diffusion.hxx

	File noflow_boundary.cxx

	File noflow_boundary.hxx

	File polarisation_drift.cxx

	File polarisation_drift.hxx

	File quasineutral.cxx

	File quasineutral.hxx

	File radiation.cxx

	File radiation.hxx

	File recycling.cxx

	File recycling.hxx

	File relax_potential.cxx

	File relax_potential.hxx

	File scale_timederivs.hxx

	File set_temperature.hxx

	File sheath_boundary.cxx

	File sheath_boundary.hxx

	File sheath_boundary_insulating.cxx

	File sheath_boundary_insulating.hxx

	File sheath_boundary_simple.cxx

	File sheath_boundary_simple.hxx

	File sheath_closure.cxx

	File sheath_closure.hxx

	File simple_conduction.hxx

	File snb_conduction.cxx

	File snb_conduction.hxx

	File solkit_hydrogen_charge_exchange.cxx

	File solkit_hydrogen_charge_exchange.hxx

	File solkit_neutral_parallel_diffusion.cxx

	File solkit_neutral_parallel_diffusion.hxx

	File sound_speed.cxx

	File sound_speed.hxx

	File thermal_force.cxx

	File thermal_force.hxx

	File transform.cxx

	File transform.hxx

	File upstream_density_feedback.cxx

	File upstream_density_feedback.hxx

	File vorticity.cxx

	File vorticity.hxx

	File zero_current.cxx

	File zero_current.hxx

File adas_carbon.hxx

Defines

	
ADAS_CARBON_H

	

Variables

	
constexpr std::array<BoutReal, 6> carbon_ionisation_energy{11.26, 24.38, 47.89, 64.49, 392.09, 489.99}

	Ionisation energies in eV from https://www.webelements.com/carbon/atoms.html Conversion 1 kJ mol‑1 = 1.0364e-2 eV These are added (removed) from the electron energy during recombination (ionisation)

	
template<int level>
constexpr std::initializer_list<char> carbon_species_name = {'c', '+', '0' + level}

	The name of the species. This initializer list can be passed to a string constructor, or used to index into an Options tree.

c, c+, c+2, c+3, …

Special cases for level=0, 1

	Template Parameters:

	level – The ionisation level: 0 is neutral, 6 is fully stripped

	
template<>
constexpr std::initializer_list<char> carbon_species_name<1> = {'c', '+'}

	

	
template<>
constexpr std::initializer_list<char> carbon_species_name<0> = {'c'}

	

	
template<int level>
struct ADASCarbonIonisation : public OpenADAS

	
#include <adas_carbon.hxx>

ADAS effective ionisation (ADF11)

	Template Parameters:

	level – The ionisation level of the ion on the left of the reaction

Public Functions

	
inline ADASCarbonIonisation(std::string, Options &alloptions, Solver*)

	

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

	
template<int level>
struct ADASCarbonRecombination : public OpenADAS

	
#include <adas_carbon.hxx>

ADAS effective recombination coefficients (ADF11)

	Template Parameters:

	level – The ionisation level of the ion on the right of the reaction

Public Functions

	
inline ADASCarbonRecombination(std::string, Options &alloptions, Solver*)

	
	Parameters:

	alloptions – The top-level options. Only uses the [“units”] subsection.

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

	
template<int level, char Hisotope>
struct ADASCarbonCX : public OpenADASChargeExchange

	
#include <adas_carbon.hxx>

	Template Parameters:

	
	level – The ionisation level of the ion on the right of the reaction

	Hisotope – The hydrogen isotope (‘h’, ‘d’ or ‘t’)

Public Functions

	
inline ADASCarbonCX(std::string, Options &alloptions, Solver*)

	
	Parameters:

	alloptions – The top-level options. Only uses the [“units”] subsection.

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

File adas_neon.hxx

Defines

	
ADAS_NEON_H

	

Variables

	
constexpr std::array<BoutReal, 10> neon_ionisation_energy{21.56, 40.96, 63.42, 97.19, 126.24, 157.93, 207.27, 239.09, 1195.78, 1362.16}

	Ionisation energies in eV from https://www.webelements.com/neon/atoms.html Conversion 1 kJ mol‑1 = 1.0364e-2 eV These are added (removed) from the electron energy during recombination (ionisation)

	
template<int level>
constexpr std::initializer_list<char> neon_species_name = {'n', 'e', '+', '0' + level}

	The name of the species. This initializer list can be passed to a string constructor, or used to index into an Options tree.

ne, ne+, ne+2, ne+3, …

Special cases for level=0, 1 and 10

	Template Parameters:

	level – The ionisation level: 0 is neutral, 10 is fully stripped.

	
template<>
constexpr std::initializer_list<char> neon_species_name<10> = {'n', 'e', '+', '1', '0'}

	

	
template<>
constexpr std::initializer_list<char> neon_species_name<1> = {'n', 'e', '+'}

	

	
template<>
constexpr std::initializer_list<char> neon_species_name<0> = {'n', 'e'}

	

	
template<int level>
struct ADASNeonIonisation : public OpenADAS

	
#include <adas_neon.hxx>

ADAS effective ionisation (ADF11)

	Template Parameters:

	level – The ionisation level of the ion on the left of the reaction

Public Functions

	
inline ADASNeonIonisation(std::string, Options &alloptions, Solver*)

	

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

	
template<int level>
struct ADASNeonRecombination : public OpenADAS

	
#include <adas_neon.hxx>

ADAS effective recombination coefficients (ADF11)

	Template Parameters:

	level – The ionisation level of the ion on the right of the reaction

Public Functions

	
inline ADASNeonRecombination(std::string, Options &alloptions, Solver*)

	
	Parameters:

	alloptions – The top-level options. Only uses the [“units”] subsection.

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

	
template<int level, char Hisotope>
struct ADASNeonCX : public OpenADASChargeExchange

	
#include <adas_neon.hxx>

	Template Parameters:

	
	level – The ionisation level of the ion on the right of the reaction

	Hisotope – The hydrogen isotope (‘h’, ‘d’ or ‘t’)

Public Functions

	
inline ADASNeonCX(std::string, Options &alloptions, Solver*)

	
	Parameters:

	alloptions – The top-level options. Only uses the [“units”] subsection.

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

File adas_reaction.cxx

File adas_reaction.hxx

Defines

	
ADAS_REACTION_H

	

	
struct OpenADASRateCoefficient

	
#include <adas_reaction.hxx>

Represent a 2D rate coefficient table (T,n) Reads data from a file, then interpolates at required values.

Public Functions

	
OpenADASRateCoefficient(const std::string &filename, int level)

	Read the file, extracting data for the given ionisation level

	Parameters:

	
	filename – The file to read. Path relative to run working directory

	level – The first index in the log coefficient array (ionisation level)

	
BoutReal evaluate(BoutReal T, BoutReal n)

	Inputs:

	Parameters:

	
	n – Electron density in m^-3

	T – Electron temperature in eV

	Returns:

	rate in units of m^3/s or eV m^3/s

Public Members

	
std::vector<std::vector<BoutReal>> log_coeff

	

	
std::vector<BoutReal> log_temperature

	

	
std::vector<BoutReal> log_density

	

	
BoutReal Tmin

	

	
BoutReal Tmax

	Range of T [eV].

	
BoutReal nmin

	

	
BoutReal nmax

	Range of density [m^-3].

	
struct OpenADAS : public Component

	
#include <adas_reaction.hxx>

Read in and perform calculations with OpenADAS data https://open.adas.ac.uk/

Uses the JSON files produced by: https://github.com/TBody/OpenADAS_to_JSON

Subclassed by ADASCarbonIonisation< level >, ADASCarbonRecombination< level >, ADASNeonIonisation< level >, ADASNeonRecombination< level >

Public Functions

	
inline OpenADAS(const Options &units, const std::string &rate_file, const std::string &radiation_file, int level, BoutReal electron_heating)

	Inputs

Notes
	The rate and radiation file names have “json_database/” prepended

	Parameters:

	
	units – Options tree containing normalisation constants

	rate_file – A JSON file containing reaction rate < σv>=””> rates (e.g. SCD, ACD)

	radiation_file – A JSON file containing radiation loss rates (e.g. PLT, PRB)

	level – The lower ionisation state in the transition e.g. 0 for neutral -> 1st ionisation and 1st -> neutral recombination

	electron_heating – The heating of the electrons per reaction [eV] This is the ionisation energy, positive for recombination and negative for ionisation

	
void calculate_rates(Options &electron, Options &from_ion, Options &to_ion)

	Perform the calculation of rates, and transfer of particles/momentum/energy

	Parameters:

	
	electron – The electron species e.g. state[“species”][“e”]

	from_ion – The ion on the left of the reaction

	to_ion – The ion on the right of the reaction

Private Members

	
OpenADASRateCoefficient rate_coef

	Reaction rate coefficient.

	
OpenADASRateCoefficient radiation_coef

	Energy loss (radiation) coefficient.

	
BoutReal electron_heating

	Heating per reaction [eV].

	
BoutReal Tnorm

	

	
BoutReal Nnorm

	

	
BoutReal FreqNorm

	Normalisations.

	
struct OpenADASChargeExchange : public Component

	
#include <adas_reaction.hxx>

Subclassed by ADASCarbonCX< level, Hisotope >, ADASNeonCX< level, Hisotope >

Public Functions

	
inline OpenADASChargeExchange(const Options &units, const std::string &rate_file, int level)

	

	
void calculate_rates(Options &electron, Options &from_A, Options &from_B, Options &to_A, Options &to_B)

	Perform charge exchange

from_A + from_B -> to_A + to_B

from_A and to_A must have the same atomic mass from_B and to_B must have the same atomic mass The charge of from_A + from_B must equal the charge of to_A + to_B

Private Members

	
OpenADASRateCoefficient rate_coef

	Reaction rate coefficient.

	
BoutReal Tnorm

	

	
BoutReal Nnorm

	

	
BoutReal FreqNorm

	Normalisations.

File amjuel_helium.cxx

Variables

	
static constexpr const BoutReal he01_rate_coefs[9][9] = {{-42.27118452798, 0.1294554451998, -0.08433979538052, 0.04910721979375, -0.01454047282438, 0.002178105605879, -0.0001657512355348, 6.161429564793e-06, -8.910615590909e-08}, {24.11668100975, -0.08121999208281, 0.04052570160482, -0.02367924962508, 0.008488392041366, -0.001452752408581, 0.0001170902182939, -4.410479245308e-06, 6.297315949647e-08}, {-12.03181133667, -0.003998282970932, -0.00281991919306, -0.00190488772724, -0.0002390948585334, 0.0001844484422285, -1.97272802786e-05, 7.779440219801e-07, -1.033814145233e-08}, {3.829444688521, 0.02546414073266, 0.002654490306111, 0.001087493205419, -0.0004469192206896, 3.71553815559e-05, -1.595144154431e-06, 6.311039124056e-08, -1.48598916668e-09}, {-0.7945839257175, -0.0149359787485, -0.001018320076497, 0.0002821927325759, 3.269264854581e-05, -5.937518354028e-06, 4.714656637197e-07, -2.433462923993e-08, 5.307423532159e-10}, {0.1054334178555, 0.004338821244147, -0.0001483560478208, -6.901574689672e-05, 6.350490312899e-06, -4.414167358057e-07, 1.266603603049e-08, 8.049435558339e-10, -3.807796193572e-11}, {-0.008578643565653, -0.0006689202603525, 9.084162487421e-05, -4.184111347149e-06, 1.153919327151e-07, 3.797435455934e-08, -4.123383037275e-09, 1.095960078746e-10, -5.109801608123e-14}, {0.0003886232727181, 5.180805123476e-05, -1.125453787291e-05, 1.536214841434e-06, -1.632601398517e-07, 8.948177075796e-09, -1.853674996294e-10, 1.342166707999e-14, 1.184569645146e-14}, {-7.487575233223e-06, -1.58297743374e-06, 4.413792107083e-07, -7.832095176637e-08, 9.58697477495e-09, -6.73907617081e-10, 2.565598443992e-11, -4.994625098807e-13, 4.12404880445e-15}}

	Coefficients to calculate the reaction rate < σv>=””> Amjuel reaction 2.3.9a, page 161

	
static constexpr const BoutReal he01_radiation_coefs[9][9] = {{-35.35258393674, -0.03428249311738, 0.06378071832382, -0.02849818870377, 0.006041903480645, -0.000686453216556, 4.251155616815e-05, -1.351759350582e-06, 1.728801977101e-08}, {19.81855871044, 0.04854482688892, -0.05088928946831, 0.01732110218818, -0.002781419068092, 0.0002244804771683, -8.875290574348e-06, 1.399429819761e-07, -1.38977874051e-10}, {-9.334355651224, -0.04524206463148, 0.02103002869692, -0.004463941003028, 0.0002900917070658, 2.482449118881e-05, -4.278064413224e-06, 2.040570181783e-07, -3.324224092217e-09}, {2.80031425041, 0.0247435078798, -0.006012991773715, 0.0008918009845745, -2.616249899141e-05, -6.885545577757e-06, 7.013616309712e-07, -2.570063437935e-08, 3.573487194914e-10}, {-0.5489088598705, -0.007339538872774, 0.0007783071302508, -4.483274558979e-05, 1.900991581685e-06, -9.747171692727e-07, 1.349829568374e-07, -5.815812094637e-09, 6.686532777575e-11}, {0.06902095610357, 0.001234159378604, 2.989745411104e-05, -3.04090620334e-05, 2.951386149372e-06, 7.592185107575e-08, -1.805060230413e-08, 3.156859219121e-10, 1.07116869734e-11}, {-0.00534294006913, -0.0001223169549107, -1.500790305823e-05, 5.253922160283e-06, -4.468905893926e-07, 7.483496971361e-09, -9.777558713428e-10, 1.770619394125e-10, -6.050995244427e-12}, {0.0002313175089975, 6.966436907981e-06, 8.94496290981e-07, -1.712024596447e-07, -9.782015167261e-09, 2.499416349949e-09, 4.731973382221e-11, -1.845161957843e-11, 6.01107014323e-13}, {-4.279800193256e-06, -1.81546666991e-07, -2.282174576618e-09, -6.972920569943e-09, 2.60719149454e-09, -2.870919514967e-10, 8.059675146168e-12, 3.704316808942e-13, -1.713225271579e-14}}

	Effective electron cooling rate due to ionization of Helium atoms. Fujimoto Formulation II (only ground level transported, no meta-stables kept explicitly)

	
static constexpr const BoutReal he10_rate_coefs[9][9] = {{-28.72754373123, -0.006171082987797, 0.02414548639597, -0.007188662067622, 0.0009481268604767, -1.958887458637e-05, -5.507786383328e-06, 4.35828868693e-07, -9.50327209101e-09}, {1.564233603544, -0.03972220721457, -0.04466712599181, 0.01247359158796, -0.001660591942878, 6.019181402025e-05, 3.800156798817e-06, -3.377807793756e-07, 6.828447501225e-09}, {-6.182140631482, 0.1626641668186, 0.03366589582541, -0.007413737965595, 0.001220189896183, -9.50529572475e-05, 4.459492214068e-06, -1.552772441333e-07, 2.866586118879e-09}, {5.459428677778, -0.1700323494998, -0.01540106384088, 0.0009524545793262, -8.734341535385e-05, -2.796027477899e-06, 4.561981097438e-07, 4.940311502014e-09, -6.52572501076e-10}, {-2.128115924661, 0.07233939709414, 0.005819196258503, -7.655935845761e-05, -1.83794906705e-05, 4.72578983298e-06, -3.99778241186e-07, 1.036731541123e-08, -3.373845712183e-11}, {0.4373730373037, -0.01574917019835, -0.001456253436544, 4.772491845078e-05, -1.827059132463e-06, -6.94116329271e-08, 2.716740135949e-08, -1.143121626264e-09, 1.295139027087e-11}, {-0.04972257208732, 0.001866175274689, 0.0002047337498511, -1.004438052808e-05, 7.59073486585e-07, -6.771179147667e-08, 1.218720257518e-09, 6.78702447954e-11, -2.432253541918e-12}, {0.002967287371427, -0.0001147811325052, -1.460813593905e-05, 7.422385993164e-07, -3.281946488134e-08, 2.164459880579e-09, 1.113868237282e-10, -1.513922678655e-11, 3.951084520871e-13}, {-7.271204747116e-05, 2.874049670122e-06, 4.124421172202e-07, -1.689203971933e-08, -9.071172814458e-10, 1.844295219334e-10, -2.055023511556e-11, 1.101902611511e-12, -2.206082129473e-14}}

	Coefficients to calculate the reaction rate < σv>=””> Amjuel reaction 2.3.13a

	
static constexpr const BoutReal he10_radiation_coefs[9][9] = {{-25.38377692766, -0.04826880987619, 0.0679657596731, -0.0240171002139, 0.004130156138736, -0.0003494803122018, 1.34502510054e-05, -1.323917127568e-07, -2.551716207606e-09}, {2.472758419513, 0.1668058989207, -0.1265192781981, 0.02938171777028, -0.00221652505507, -0.0001261523686946, 2.701401918133e-05, -1.370446267883e-06, 2.313673787201e-08}, {-8.864417999957, -0.1882326730037, 0.119402867431, -0.02382836629119, 0.001134820469638, 0.0001782113978272, -2.305554399898e-05, 9.43029409318e-07, -1.305188423829e-08}, {8.394970578944, 0.08397993216045, -0.0579697281374, 0.01158600348753, -0.0007504743150582, -2.602911694939e-05, 4.568209602293e-06, -1.458110560501e-07, 9.826599911934e-10}, {-3.465864794112, -0.0157268418022, 0.01398192327776, -0.002700181027443, 0.0001902304157269, -1.534387905925e-06, -1.03206007926e-07, -1.355858638619e-08, 5.917279771473e-10}, {0.7479071085372, 0.0005997666028811, -0.001614053457119, 0.0002620866439317, -1.103039382799e-05, -4.215447554819e-07, -9.926133276192e-09, 4.148813674084e-09, -1.207867670158e-10}, {-0.08863575102304, 0.0001901540166344, 6.941090299375e-05, -3.042043168371e-06, -1.677907209787e-06, 2.153652742395e-07, -6.354480058307e-09, -1.223103792568e-10, 5.54305794673e-12}, {0.005484926807853, -2.510359436743e-05, 1.123735445147e-06, -9.198494797723e-07, 2.058851315121e-07, -1.866416375894e-08, 7.564835556537e-10, -1.622993472948e-11, 2.428986170198e-13}, {-0.0001388441945179, 9.1419955967e-07, -1.16891589033e-07, 3.485370731777e-08, -5.086412415216e-09, 3.674153797642e-10, -1.621809988343e-11, 6.737654534264e-13, -1.678705755876e-14}}

	Radiation energy loss from helium recombination The potential energy (24.586eV per event) should be added to the electrons so that the process may be a net energy source for the electrons

File amjuel_helium.hxx

Defines

	
AMJUEL_HELIUM_H

	

	
struct AmjuelHeIonisation01 : public AmjuelReaction

	
#include <amjuel_helium.hxx>

e + he -> he+ + 2e Amjuel reaction 2.3.9a, page 161 Not resolving metastables, only transporting ground state

Public Functions

	
inline AmjuelHeIonisation01(std::string name, Options &alloptions, Solver *solver)

	

	
void calculate_rates(Options &state, Field3D &reaction_rate, Field3D &momentum_exchange, Field3D &energy_exchange, Field3D &energy_loss)

	

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

	
struct AmjuelHeRecombination10 : public AmjuelReaction

	
#include <amjuel_helium.hxx>

e + he+ -> he Amjuel reaction 2.3.13a Not resolving metastables. Includes radiative + threebody + dielectronic. Fujimoto Formulation II

Public Functions

	
inline AmjuelHeRecombination10(std::string name, Options &alloptions, Solver *solver)

	

	
void calculate_rates(Options &state, Field3D &reaction_rate, Field3D &momentum_exchange, Field3D &energy_exchange, Field3D &energy_loss)

	

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

File amjuel_hyd_ionisation.cxx

Variables

	
static constexpr const BoutReal rate_coefs[9][9] = {{-32.4802533034, -0.05440669186583, 0.09048888225109, -0.04054078993576, 0.008976513750477, -0.001060334011186, 6.846238436472e-05, -2.242955329604e-06, 2.890437688072e-08}, {14.2533239151, -0.0359434716076, -0.02014729121556, 0.0103977361573, -0.001771792153042, 0.0001237467264294, -3.130184159149e-06, -3.051994601527e-08, 1.888148175469e-09}, {-6.632235026785, 0.09255558353174, -0.005580210154625, -0.005902218748238, 0.001295609806553, -0.0001056721622588, 4.646310029498e-06, -1.479612391848e-07, 2.85225125832e-09}, {2.059544135448, -0.07562462086943, 0.01519595967433, 0.0005803498098354, -0.0003527285012725, 3.201533740322e-05, -1.835196889733e-06, 9.474014343303e-08, -2.342505583774e-09}, {-0.442537033141, 0.02882634019199, -0.00728577148505, 0.0004643389885987, 1.145700685235e-06, 8.493662724988e-07, -1.001032516512e-08, -1.476839184318e-08, 6.047700368169e-10}, {0.06309381861496, -0.00578868653578, 0.00150738295525, -0.0001201550548662, 6.574487543511e-06, -9.678782818849e-07, 5.176265845225e-08, 1.29155167686e-09, -9.685157340473e-11}, {-0.005620091829261, 0.000632910556804, -0.0001527777697951, 8.270124691336e-06, 3.224101773605e-08, 4.377402649057e-08, -2.622921686955e-09, -2.259663431436e-10, 1.161438990709e-11}, {0.0002812016578355, -3.564132950345e-05, 7.222726811078e-06, 1.433018694347e-07, -1.097431215601e-07, 7.789031791949e-09, -4.197728680251e-10, 3.032260338723e-11, -8.911076930014e-13}, {-6.011143453374e-06, 8.089651265488e-07, -1.186212683668e-07, -2.381080756307e-08, 6.271173694534e-09, -5.48301024493e-10, 3.064611702159e-11, -1.355903284487e-12, 2.935080031599e-14}}

	Coefficients to calculate the reaction rate < σv>=””> Reaction 2.1.5, Amjuel page 135 E-index varies fastest, so coefficient is [T][n]

	
static constexpr const BoutReal radiation_coefs[9][9] = {{-24.97580168306, 0.001081653961822, -0.0007358936044605, 0.0004122398646951, -0.0001408153300988, 2.46973083622e-05, -2.212823709798e-06, 9.648139704737e-08, -1.611904413846e-09}, {10.04448839974, -0.003189474633369, 0.002510128351932, -0.0007707040988954, 0.0001031309578578, -3.716939423005e-06, -4.249704742353e-07, 4.164960852522e-08, -9.893423877739e-10}, {-4.867952931298, -0.00585226785069, 0.002867458651322, -0.0008328668093987, 0.0002056134355492, -3.301570807523e-05, 2.831739755462e-06, -1.164969298033e-07, 1.78544027879e-09}, {1.689422238067, 0.007744372210287, -0.003087364236497, 0.000470767628842, -5.508611815406e-05, 7.305867762241e-06, -6.000115718138e-07, 2.045211951761e-08, -1.79031287169e-10}, {-0.41035323201, -0.003622291213236, 0.001327415215304, -0.0001424078519508, 3.307339563081e-06, 5.256679519499e-09, 7.597020291557e-10, 1.799505288362e-09, -9.280890205774e-11}, {0.06469718387357, 0.0008268567898126, -0.0002830939623802, 2.41184802496e-05, 5.7079848611e-07, -1.0169456933e-07, 3.517154874443e-09, -4.453195673947e-10, 2.002478264932e-11}, {-0.006215861314764, -9.836595524255e-05, 3.017296919092e-05, -1.474253805845e-06, -2.397868837417e-07, 1.518743025531e-08, 4.149084521319e-10, -6.803200444549e-12, -1.151855939531e-12}, {0.000328980989546, 5.845697922558e-06, -1.479323780613e-06, -4.633029022577e-08, 3.337390374041e-08, -1.770252084837e-09, -5.289806153651e-11, 3.86439477625e-12, -8.694978774411e-15}, {-7.335808238917e-06, -1.367574486885e-07, 2.423236476442e-08, 5.733871119707e-09, -1.512777532459e-09, 8.733801272834e-11, 7.196798841269e-13, -1.441033650378e-13, 1.734769090475e-15}}

	Coefficients to calculate the radiation energy loss Reaction 2.1.5, Amjuel page 280 E-index varies fastest, so coefficient is [T][n]

File amjuel_hyd_ionisation.hxx

Defines

	
AMJUEL_HYD_IONISATION_H

	

	
struct AmjuelHydIonisation : public AmjuelReaction

	
#include <amjuel_hyd_ionisation.hxx>

Hydrogen ionisation, Amjuel rates.

Subclassed by AmjuelHydIonisationIsotope< Isotope >

Public Functions

	
inline AmjuelHydIonisation(std::string name, Options &alloptions, Solver *solver)

	

	
void calculate_rates(Options &electron, Options &atom, Options &ion, Field3D &reaction_rate, Field3D &momentum_exchange, Field3D &energy_exchange, Field3D &energy_loss)

	

	
template<char Isotope>
struct AmjuelHydIonisationIsotope : public AmjuelHydIonisation

	
#include <amjuel_hyd_ionisation.hxx>

Hydrogen ionisation Templated on a char to allow ‘h’, ‘d’ and ‘t’ species to be treated with the same code

Public Functions

	
inline AmjuelHydIonisationIsotope(std::string name, Options &alloptions, Solver *solver)

	

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
bool diagnose

	Outputting diagnostics?

	
Field3D S

	Particle exchange.

	
Field3D F

	Momentum exchange.

	
Field3D E

	Energy exchange.

	
Field3D R

	Radiation loss.

File amjuel_hyd_recombination.cxx

Variables

	
static constexpr const BoutReal rate_coefs[9][9] = {{-28.58858570847, 0.02068671746773, -0.007868331504755, 0.003843362133859, -0.0007411492158905, 9.273687892997e-05, -7.063529824805e-06, 3.026539277057e-07, -5.373940838104e-09}, {-0.7676413320499, 0.0127800603259, -0.01870326896978, 0.00382855504889, -0.0003627770385335, 4.401007253801e-07, 1.932701779173e-06, -1.176872895577e-07, 2.215851843121e-09}, {0.002823851790251, -0.001907812518731, 0.01121251125171, -0.003711328186517, 0.0006617485083301, -6.860774445002e-05, 4.508046989099e-06, -1.723423509284e-07, 2.805361431741e-09}, {-0.01062884273731, -0.01010719783828, 0.004208412930611, -0.00100574441054, 0.0001013652422369, -2.044691594727e-06, -4.431181498017e-07, 3.457903389784e-08, -7.374639775683e-10}, {0.001582701550903, 0.002794099401979, -0.002024796037098, 0.0006250304936976, -9.224891301052e-05, 7.546853961575e-06, -3.682709551169e-07, 1.035928615391e-08, -1.325312585168e-10}, {-0.0001938012790522, 0.0002148453735781, 3.393285358049e-05, -3.746423753955e-05, 7.509176112468e-06, -8.688365258514e-07, 7.144767938783e-08, -3.367897014044e-09, 6.250111099227e-11}, {6.041794354114e-06, -0.0001421502819671, 6.14387907608e-05, -1.232549226121e-05, 1.394562183496e-06, -6.434833988001e-08, -2.746804724917e-09, 3.564291012995e-10, -8.55170819761e-12}, {1.742316850715e-06, 1.595051038326e-05, -7.858419208668e-06, 1.774935420144e-06, -2.187584251561e-07, 1.327090702659e-08, -1.386720240985e-10, -1.946206688519e-11, 5.745422385081e-13}, {-1.384927774988e-07, -5.664673433879e-07, 2.886857762387e-07, -6.591743182569e-08, 8.008790343319e-09, -4.805837071646e-10, 6.459706573699e-12, 5.510729582791e-13, -1.680871303639e-14}}

	Coefficients to calculate the effective reaction rate < σv>=””> Reaction 2.1.8, Amjuel page 141 (section H.4) E-index varies fastest, so coefficient is [T][n]

	
static constexpr const BoutReal radiation_coefs[9][9] = {{-25.92450349909, 0.01222097271874, 4.278499401907e-05, 0.001943967743593, -0.0007123474602102, 0.0001303523395892, -1.186560752561e-05, 5.334455630031e-07, -9.349857887253e-09}, {-0.7290670236493, -0.01540323930666, -0.00340609377919, 0.001532243431817, -0.0004658423772784, 5.972448753445e-05, -4.070843294052e-06, 1.378709880644e-07, -1.818079729166e-09}, {0.02363925869096, 0.01164453346305, -0.005845209334594, 0.002854145868307, -0.0005077485291132, 4.211106637742e-05, -1.251436618314e-06, -1.626555745259e-08, 1.073458810743e-09}, {0.003645333930947, -0.001005820792983, 0.0006956352274249, -0.0009305056373739, 0.0002584896294384, -3.294643898894e-05, 2.112924018518e-06, -6.544682842175e-08, 7.8102930757e-10}, {0.001594184648757, -1.582238007548e-05, 0.0004073695619272, -9.379169243859e-05, 1.490890502214e-06, 2.245292872209e-06, -3.150901014513e-07, 1.631965635818e-08, -2.984093025695e-10}, {-0.001216668033378, -0.0003503070140126, 0.0001043500296633, 9.536162767321e-06, -6.908681884097e-06, 8.232019008169e-07, -2.905331051259e-08, -3.169038517749e-10, 2.442765766167e-11}, {0.0002376115895241, 0.0001172709777146, -6.695182045674e-05, 1.18818400621e-05, -4.381514364966e-07, -6.936267173079e-08, 6.592249255001e-09, -1.778887958831e-10, 1.160762106747e-12}, {-1.930977636766e-05, -1.318401491304e-05, 8.848025453481e-06, -2.07237071139e-06, 2.055919993599e-07, -7.489632654212e-09, -7.073797030749e-11, 1.047087505147e-11, -1.87744627135e-13}, {5.599257775146e-07, 4.977823319311e-07, -3.615013823092e-07, 9.466989306497e-08, -1.146485227699e-08, 6.772338917155e-10, -1.776496344763e-11, 7.199195061382e-14, 3.929300283002e-15}}

	Coefficients to calculate the radiation energy loss Reaction 2.1.8, Amjuel page 284 (section H.10) E-index varies fastest, so coefficient is [T][n]

File amjuel_hyd_recombination.hxx

Defines

	
AMJUEL_HYD_RECOMBINATION_H

	

	
struct AmjuelHydRecombination : public AmjuelReaction

	
#include <amjuel_hyd_recombination.hxx>

Hydrogen recombination, Amjuel rates

Includes both radiative and 3-body recombination

Subclassed by AmjuelHydRecombinationIsotope< Isotope >

Public Functions

	
inline AmjuelHydRecombination(std::string name, Options &alloptions, Solver *solver)

	

	
void calculate_rates(Options &electron, Options &atom, Options &ion, Field3D &reaction_rate, Field3D &momentum_exchange, Field3D &energy_exchange, Field3D &energy_loss)

	

	
template<char Isotope>
struct AmjuelHydRecombinationIsotope : public AmjuelHydRecombination

	
#include <amjuel_hyd_recombination.hxx>

Hydrogen recombination Templated on a char to allow ‘h’, ‘d’ and ‘t’ species to be treated with the same code

Public Functions

	
inline AmjuelHydRecombinationIsotope(std::string name, Options &alloptions, Solver *solver)

	

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
bool diagnose

	Outputting diagnostics?

	
Field3D S

	Particle exchange.

	
Field3D F

	Momentum exchange.

	
Field3D E

	Energy exchange.

	
Field3D R

	Radiation loss.

File amjuel_reaction.hxx

Defines

	
AMJUEL_REACTION_H

	

	
struct AmjuelReaction : public Component

	
#include <amjuel_reaction.hxx>

Subclassed by AmjuelHeIonisation01, AmjuelHeRecombination10, AmjuelHydIonisation, AmjuelHydRecombination

Public Functions

	
inline AmjuelReaction(std::string name, Options &alloptions, Solver*)

	

Protected Functions

	
inline BoutReal clip(BoutReal value, BoutReal min, BoutReal max)

	

	
template<size_t rows, size_t cols>
inline BoutReal evaluate(const BoutReal (&coefs)[rows][cols], BoutReal T, BoutReal n)

	Evaluate a double polynomial fit in n and T (page 20 of amjuel.pdf)

coefs[T][n] Input in units: n in m^-3 T in eV

Output in SI, units m^3/s, or eV m^3/s for energy loss

	
template<size_t rows, size_t cols>
inline void electron_reaction(Options &electron, Options &from_ion, Options &to_ion, const BoutReal (&rate_coefs)[rows][cols], const BoutReal (&radiation_coefs)[rows][cols], BoutReal electron_heating, Field3D &reaction_rate, Field3D &momentum_exchange, Field3D &energy_exchange, Field3D &energy_loss)

	Electron-driven reaction e + from_ion -> to_ion [+ e? + e?]

Coefficients from Amjuel:
	rate_coefs Double-polynomial log fit [T][n] for < σv>=””>

	radiation_coefs Double-polynomial log fit [T][n] for electron loss electron_heating Energy added to electrons per reaction [eV]

Protected Attributes

	
BoutReal Tnorm

	

	
BoutReal Nnorm

	

	
BoutReal FreqNorm

	

File anomalous_diffusion.cxx

File anomalous_diffusion.hxx

Defines

	
ANOMALOUS_DIFFUSION_H

	

	
struct AnomalousDiffusion : public Component

	
#include <anomalous_diffusion.hxx>

Add anomalous diffusion of density, momentum and energy

Mesh inputs

D_<name>, chi_<name>, nu_<name> e.g D_e, chi_e, nu_e

in units of m^2/s

Public Functions

	
AnomalousDiffusion(std::string name, Options &alloptions, Solver*)

	Inputs

	<name>
	anomalous_D This overrides D_<name> mesh input

	anomalous_chi This overrides chi_<name>

	anomalous_nu Overrides nu_<name>

	anomalous_sheath_flux Allow anomalous flux into sheath?

	
virtual void transform(Options &state) override

	Inputs
	species
	<name>
	density

	temperature (optional)

	velocity (optional)

Sets in the state

	species
	<name>
	density_source

	momentum_source

	energy_source

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
std::string name

	Species name.

	
bool diagnose

	Outputting diagnostics?

	
bool include_D

	

	
bool include_chi

	

	
bool include_nu

	Which terms should be included?

	
Field2D anomalous_D

	Anomalous density diffusion coefficient.

	
Field2D anomalous_chi

	Anomalous thermal diffusion coefficient.

	
Field2D anomalous_nu

	Anomalous momentum diffusion coefficient.

	
bool anomalous_sheath_flux

	Allow anomalous diffusion into sheath?

File collisions.cxx

File collisions.hxx

Defines

	
COLLISIONS_H

	

	
struct Collisions : public Component

	
#include <collisions.hxx>

Calculates the collision rate of each species with all other species

Important: Be careful when including both ion_neutral collisions and reactions such as charge exchange, since that may result in double counting. Similarly for electron_neutral collisions and ionization reactions.

Public Functions

	
Collisions(std::string name, Options &alloptions, Solver*)

	
The following boolean options under alloptions[name] control which collisions are calculated:

	electron_electron

	electron_ion

	electron_neutral

	ion_ion

	ion_neutral

	neutral_neutral

There are also switches for other terms:

	frictional_heating Include R dot v heating term as energy source? (includes Ohmic heating)

	Parameters:

	alloptions – Settings, which should include:
	units
	eV

	inv_meters_cubed

	meters

	seconds

	
virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

Private Functions

	
void collide(Options &species1, Options &species2, const Field3D &nu_12, BoutReal momentum_coefficient)

	Update collision frequencies, momentum and energy exchange nu_12 normalised frequency momentum_coefficient Leading coefficient on parallel friction e.g 0.51 for electron-ion with Zi=1

Calculate transfer of momentum and energy between species1 and species2 nu_12 normalised frequency

Modifies species1 and species2
	collision_frequency

	momentum_source if species1 or species2 velocity is set

	energy_source if species1 or species2 temperature is set or velocity is set and frictional_heating

Note: A* variables are used for atomic mass numbers; mass* variables are species masses in kg

Private Members

	
BoutReal Tnorm

	

	
BoutReal Nnorm

	

	
BoutReal rho_s0

	

	
BoutReal Omega_ci

	

	
bool electron_electron

	Which types of collisions to include?

	
bool electron_ion

	

	
bool electron_neutral

	

	
bool ion_ion

	

	
bool ion_neutral

	

	
bool neutral_neutral

	

	
bool frictional_heating

	Include frictional heating term?

File component.cxx

Functions

	
bool isSetFinal(const Options &option, const std::string &location)

	Check if an option can be fetched Sets the final flag so setting the value afterwards will lead to an error

	
bool isSetFinalNoBoundary(const Options &option, const std::string &location)

	Check if an option can be fetched Sets the final flag so setting the value in the domain afterwards will lead to an error

File component.hxx

Defines

	
HERMES_COMPONENT_H

	

	
TOSTRING_(x)

	

	
TOSTRING(x)

	

	
IS_SET(option)

	

	
IS_SET_NOBOUNDARY(option)

	

	
GET_VALUE(Type, option)

	

	
GET_NOBOUNDARY(Type, option)

	

Typedefs

	
using RegisterComponent = ComponentFactory::RegisterInFactory<DerivedType>

	Simpler name for Factory registration helper class

Usage: #include "component.hxx"
namespace {
RegisterComponent<MyComponent> registercomponentmine("mycomponent");
}

Functions

	
template<typename T>
T getNonFinal(const Options &option)

	Faster non-printing getter for Options If this fails, it will throw BoutException

This version allows the value to be modified later i.e. the value returned is not the “final” value.

	Template Parameters:

	T – The type the option should be converted to

	Parameters:

	option – The Option whose value will be returned

	
template<typename T>
T get(const Options &option, const std::string &location = "")

	Faster non-printing getter for Options If this fails, it will throw BoutException

This marks the value as final, both in the domain and the boundary. Subsequent calls to “set” this option will raise an exception.

	Template Parameters:

	T – The type the option should be converted to

	Parameters:

	
	option – The Option whose value will be returned

	location – An optional string to indicate where this value is used

	
bool isSetFinal(const Options &option, const std::string &location = "")

	Check if an option can be fetched Sets the final flag so setting the value afterwards will lead to an error

	
bool isSetFinalNoBoundary(const Options &option, const std::string &location = "")

	Check if an option can be fetched Sets the final flag so setting the value in the domain afterwards will lead to an error

	
template<typename T>
T getNoBoundary(const Options &option, const std::string &location = "")

	Faster non-printing getter for Options If this fails, it will throw BoutException

This marks the value as final in the domain. The caller is assuming that the boundary values are non-final or invalid. Subsequent calls to “set” this option will raise an exception, but calls to “setBoundary” will not.

	Template Parameters:

	T – The type the option should be converted to

	Parameters:

	
	option – The Option whose value will be returned

	location – An optional string to indicate where this value is used

	
template<typename T>
bool hermesDataInvalid(const T &value)

	Check whether value is valid, returning true if invalid i.e contains non-finite values

	
template<>
inline bool hermesDataInvalid(const Field3D &value)

	Check Field3D values. Doesn’t check boundary cells

	
template<typename T>
Options &set(Options &option, T value)

	Set values in an option. This could be optimised, but currently the is_value private variable would need to be modified.

If the value has been used then raise an exception (if CHECK >= 1) This is to prevent values being modified after use.

	Template Parameters:

	T – The type of the value to set. Usually this is inferred

	
template<typename T>
Options &setBoundary(Options &option, T value)

	Set values in an option. This could be optimised, but currently the is_value private variable would need to be modified.

This version only checks that the boundary cells have not already been used by a call to get, not a call to getNoBoundary or getNonFinal.

	Template Parameters:

	T – The type of the value to set. Usually this is inferred

	
template<typename T>
Options &add(Options &option, T value)

	Add value to a given option. If not already set, treats as zero and sets the option to the value.

	Template Parameters:

	T – The type of the value to add. The existing value will be casted to this type

	Parameters:

	
	option – The value to modify (or set if not already set)

	value – The quantity to add.

	
template<typename T>
Options &subtract(Options &option, T value)

	Add value to a given option. If not already set, treats as zero and sets the option to the value.

	Parameters:

	
	option – The value to modify (or set if not already set)

	value – The quantity to add.

	
template<typename T>
void set_with_attrs(Options &option, T value, std::initializer_list<std::pair<std::string, Options::AttributeType>> attrs)

	

	
struct Component

	
#include <component.hxx>

Interface for a component of a simulation model

The constructor of derived types should have signature (std::string name, Options &options, Solver *solver)

Subclassed by AmjuelReaction, AnomalousDiffusion, Collisions, DiamagneticDrift, Electromagnetic, ElectronForceBalance, ElectronViscosity, EvolveDensity, EvolveEnergy, EvolveMomentum, EvolvePressure, FixedDensity, FixedFractionIons, FixedFractionRadiation< CoolingCurve >, FixedTemperature, FixedVelocity, HydrogenChargeExchange, Ionisation, IonViscosity, Isothermal, NeutralBoundary, NeutralFullVelocity, NeutralMixed, NeutralParallelDiffusion, NoFlowBoundary, OpenADAS, OpenADASChargeExchange, PolarisationDrift, Quasineutral, Recycling, RelaxPotential, ScaleTimeDerivs, SetTemperature, SheathBoundary, SheathBoundaryInsulating, SheathBoundarySimple, SheathClosure, SimpleConduction, SNBConduction, SOLKITHydrogenChargeExchange, SOLKITNeutralParallelDiffusion, SoundSpeed, ThermalForce, Transform, UpstreamDensityFeedback, Vorticity, ZeroCurrent

Public Functions

	
inline virtual ~Component()

	

	
virtual void transform(Options &state) = 0

	Modify the given simulation state All components must implement this function

	
inline virtual void finally(const Options &state)

	Use the final simulation state to update internal state (e.g. time derivatives)

	
inline virtual void outputVars(Options &state)

	Add extra fields for output, or set attributes e.g docstrings.

	
inline virtual void restartVars(Options &state)

	Add extra fields to restart files.

	
inline virtual void precon(const Options &state, BoutReal gamma)

	Preconditioning.

Public Static Functions

	
static std::unique_ptr<Component> create(const std::string &type, const std::string &name, Options &options, Solver *solver)

	Create a Component

	Parameters:

	
	type – The name of the component type to create (e.g. “evolve_density”)

	name – The species/name for this instance.

	options – Component settings: options[name] are specific to this component

	solver – Time-integration solver

	
class ComponentFactory : public Factory<Component, ComponentFactory, const std::string&, Options&, Solver*>

	
#include <component.hxx>

A factory for creating Components on demand, based on a string type name The template arguments after ComponentFactory are the types of the arguments to the Component constructor.

Public Static Attributes

	
static constexpr auto type_name = "Component"

	

	
static constexpr auto section_name = "component"

	

	
static constexpr auto option_name = "type"

	

	
static constexpr auto default_type = "none"

	

File component_scheduler.cxx

File component_scheduler.hxx

Defines

	
COMPONENT_SCHEDULER_H

	

	
class ComponentScheduler

	
#include <component_scheduler.hxx>

Creates and schedules model components

Currently only one implementation, but in future alternative scheduler types could be created. There is therefore a static create function which in future could switch between types.

Public Functions

	
ComponentScheduler(Options &scheduler_options, Options &component_options, Solver *solver)

	

	
void transform(Options &state)

	Run the scheduler, modifying the state. This calls all components’ transform() methods, then all component’s finally() methods.

	
void outputVars(Options &state)

	Add metadata, extra outputs. This would typically be called only for writing to disk, rather than every internal timestep.

	
void restartVars(Options &state)

	Add variables to restart files.

	
void precon(const Options &state, BoutReal gamma)

	Preconditioning.

Public Static Functions

	
static std::unique_ptr<ComponentScheduler> create(Options &scheduler_options, Options &component_options, Solver *solver)

	Inputs

	Parameters:

	
	scheduler_options – Configuration of the scheduler Should contain “components”, a comma-separated list of component names

	component_options – Configuration of the components.
	<name>
	type = Component classes, … If not provided, the type is the same as the name Multiple classes can be given, separated by commas. All classes will use the same Options section.

	… Options to control the component(s)

	solver – Used for time-dependent components to evolve quantities

Private Members

	
std::vector<std::unique_ptr<Component>> components

	The components to be executed in order.

File diamagnetic_drift.cxx

File diamagnetic_drift.hxx

Defines

	
DIAMAGNETIC_DRIFT_H

	

	
struct DiamagneticDrift : public Component

	
#include <diamagnetic_drift.hxx>

Calculate diamagnetic flows.

Public Functions

	
DiamagneticDrift(std::string name, Options &options, Solver *solver)

	

	
virtual void transform(Options &state) override

	For every species, if it has:
	temperature

	charge

Modifies:
	density_source

	energy_source

	momentum_source

Private Members

	
Vector2D Curlb_B

	

	
bool bndry_flux

	

	
Field2D diamag_form

	

File div_ops.cxx

Functions

	
const Field3D Div_par_diffusion_index(const Field3D &f, bool bndry_flux)

	Diffusion in index space

Similar to using Div_par_diffusion(SQ(mesh->dy)*mesh->g_22, f)

	Parameters:

	
	The – [in] field to be differentiated

	bndry_flux – [in] Are fluxes through the boundary calculated?

	
BoutReal BOUTMIN(const BoutReal &a, const BoutReal &b, const BoutReal &c, const BoutReal &d)

	

	
void Upwind(Stencil1D &n, const BoutReal h)

	

	
void Fromm(Stencil1D &n, const BoutReal h)

	

	
BoutReal minmod(BoutReal a, BoutReal b)

	The minmod function returns the value with the minimum magnitude If the inputs have different signs then returns zero

	
BoutReal minmod(BoutReal a, BoutReal b, BoutReal c)

	

	
void MinMod(Stencil1D &n, const BoutReal h)

	

	
void MC(Stencil1D &n, const BoutReal h)

	

	
void XPPM(Stencil1D &n, const BoutReal h)

	

	
const Field3D Div_n_bxGrad_f_B_XPPM(const Field3D &n, const Field3D &f, bool bndry_flux, bool poloidal, bool positive)

	

	
const Field3D Div_Perp_Lap_FV_Index(const Field3D &as, const Field3D &fs, bool xflux)

	*** USED ***

	
const Field3D D4DX4_FV_Index(const Field3D &f, bool bndry_flux)

	

	
const Field2D Laplace_FV(const Field2D &k, const Field2D &f)

	*** USED *** X-Y diffusion

NOTE: Assumes g^12 = 0, so X and Y are orthogonal. Otherwise we would need the corner cell values to take Y derivatives along X edges

	
const Field3D Div_a_Grad_perp_upwind(const Field3D &a, const Field3D &f)

	Perpendicular diffusion including X and Y directions.

	
struct Stencil1D

	
Public Members

	
BoutReal c

	

	
BoutReal m

	

	
BoutReal p

	

	
BoutReal mm

	

	
BoutReal pp

	

	
BoutReal L

	

	
BoutReal R

	

File div_ops.hxx

Functions

	
const Field3D Div_par_diffusion_index(const Field3D &f, bool bndry_flux = true)

	Diffusion in index space

Similar to using Div_par_diffusion(SQ(mesh->dy)*mesh->g_22, f)

	Parameters:

	
	The – [in] field to be differentiated

	bndry_flux – [in] Are fluxes through the boundary calculated?

	
const Field3D Div_n_bxGrad_f_B_XPPM(const Field3D &n, const Field3D &f, bool bndry_flux = true, bool poloidal = false, bool positive = false)

	

	
const Field3D Div_Perp_Lap_FV_Index(const Field3D &a, const Field3D &f, bool xflux)

	*** USED ***

	
const Field3D D4DX4_FV_Index(const Field3D &f, bool bndry_flux = false)

	

	
const Field2D Laplace_FV(const Field2D &k, const Field2D &f)

	*** USED *** X-Y diffusion

NOTE: Assumes g^12 = 0, so X and Y are orthogonal. Otherwise we would need the corner cell values to take Y derivatives along X edges

	
const Field3D Div_a_Grad_perp_upwind(const Field3D &a, const Field3D &f)

	Perpendicular diffusion including X and Y directions.

	
namespace FV

	
Functions

	
template<typename CellEdges = MC>
const Field3D Div_par_fvv(const Field3D &f_in, const Field3D &v_in, const Field3D &wave_speed_in, bool fixflux = true)

	

	
template<typename CellEdges = MC>
const Field3D Div_par_mod(const Field3D &f_in, const Field3D &v_in, const Field3D &wave_speed_in, bool fixflux = true)

	Finite volume parallel divergence

NOTE: Modified version, applies limiter to velocity and field Performs better (smaller overshoots) than Div_par

Preserves the sum of f*J*dx*dy*dz over the domain

NB: Uses to/from FieldAligned coordinates

	Parameters:

	
	f_in – [in] The field being advected. This will be reconstructed at cell faces using the given CellEdges method

	v_in – [in] The advection velocity. This will be interpolated to cell boundaries using linear interpolation

	wave_speed_in – [in] Local maximum speed of all waves in the system at each

	fixflux – [in] Fix the flux at the boundary to be the value at the midpoint (for boundary conditions)

	
struct Superbee

	
#include <div_ops.hxx>

Superbee limiter

This corresponds to the limiter function φ(r) = max(0, min(2r, 1), min(r,2)

The value at cell right (i.e. i + 1/2) is:

n.R = n.c - φ(r) (n.c - (n.p + n.c)/2) = n.c + φ(r) (n.p - n.c)/2

Four regimes: a) r < 1/2 -> φ(r) = 2r n.R = n.c + gL b) 1/2 < r < 1 -> φ(r) = 1 n.R = n.c + gR/2 c) 1 < r < 2 -> φ(r) = r n.R = n.c + gL/2 d) 2 < r -> φ(r) = 2 n.R = n.c + gR

where the left and right gradients are: gL = n.c - n.m gR = n.p - n.c

Public Functions

	
inline void operator()(Stencil1D &n)

	

File electromagnetic.cxx

File electromagnetic.hxx

Defines

	
ELECTROMAGNETIC_H

	

	
struct Electromagnetic : public Component

	
#include <electromagnetic.hxx>

Electromagnetic potential A||

Reinterprets all species’ parallel momentum as a combination of a parallel flow and a magnetic contribution, i.e. canonical momentum. m n v_{||} + Z e n A_{||}

Changes the “momentum” of each species so that after this component the momentuum of each species is just m n v_{||}

This component should be run after all species have set their momentum, but before the momentum is used e.g to set boundary conditions.

Calculates the electromagnetic potential A_{||} using

Laplace(Apar) - alpha_em * Apar = -Ajpar

By default outputs Apar every timestep. When diagnose = true in also saves alpha_em and Ajpar.

Public Functions

	
Electromagnetic(std::string name, Options &options, Solver *solver)

	Options
	units

	<name>
	diagnose Saves Ajpar and alpha_em time-dependent values

	
virtual void transform(Options &state) override

	Inputs
	species
	<..> All species with charge and parallel momentum
	charge

	momentum

	density

	AA

Sets
	species
	<..> All species with charge and parallel momentum
	momentum (modifies) to m n v||

	velocity (modifies) to v||

	fields
	Apar Electromagnetic potential

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
Field3D Apar

	

	
Field3D Ajpar

	

	
Field3D alpha_em

	

	
BoutReal beta_em

	

	
std::unique_ptr<Laplacian> aparSolver

	

	
bool diagnose

	Output additional diagnostics?

File electron_force_balance.cxx

File electron_force_balance.hxx

Defines

	
ELECTRON_FORCE_BALANCE

	

	
struct ElectronForceBalance : public Component

	
#include <electron_force_balance.hxx>

Balance the parallel electron pressure gradient against the electric field. Use this electric field to calculate a force on the other species

E = (-∇p_e + F) / n_e

where F is the momentum source for the electrons.

Then uses this electric field to calculate a force on all ion species.

Note: This needs to be put after collisions and other components which impose forces on electrons

Public Functions

	
inline ElectronForceBalance(std::string, Options&, Solver*)

	

	
virtual void transform(Options &state) override

	Required inputs
	species
	e
	pressure

	density

	momentum_source [optional] Asserts that charge = -1

Sets in the input
	species
	<all except=”” e>=””> if both density and charge are set
	momentum_source

File electron_viscosity.cxx

File electron_viscosity.hxx

Defines

	
ELECTRON_VISCOSITY_H

	

	
struct ElectronViscosity : public Component

	
#include <electron_viscosity.hxx>

Electron viscosity

Adds Braginskii parallel electron viscosity, with SOLPS-style viscosity flux limiter

Needs to be calculated after collisions, because collision frequency is used to calculate parallel viscosity

References
	https://farside.ph.utexas.edu/teaching/plasma/lectures1/node35.html

Public Functions

	
ElectronViscosity(std::string name, Options &alloptions, Solver*)

	Braginskii electron viscosity.

Inputs
	<name>
	diagnose: bool, default false Output diagnostic SNVe_viscosity?

	eta_limit_alpha: float, default -1.0 Flux limiter coefficient. < 0 means no limiter

	
virtual void transform(Options &state) override

	Inputs
	species
	e
	pressure (skips if not present)

	velocity (skips if not present)

	collision_frequency

Sets in the state
	species
	e
	momentum_source

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
BoutReal eta_limit_alpha

	Flux limit coefficient.

	
bool diagnose

	Output viscosity diagnostic?

	
Field3D viscosity

	The viscosity momentum source.

File evolve_density.cxx

File evolve_density.hxx

Defines

	
EVOLVE_DENSITY_H

	

	
struct EvolveDensity : public Component

	
#include <evolve_density.hxx>

Evolve species density in time

Mesh inputs

N<name>_src A source of particles, per cubic meter per second. This can be over-ridden by the source option setting.

Public Functions

	
EvolveDensity(std::string name, Options &options, Solver *solver)

	Inputs

	<name>
	charge Particle charge e.g. hydrogen = 1

	AA Atomic mass number e.g. hydrogen = 1

	bndry_flux Allow flow through radial boundaries? Default is true.

	poloidal_flows Include poloidal ExB flows? Default is true.

	density_floor Minimum density floor. Default is 1e-5 normalised units

	low_n_diffuse Enhance parallel diffusion at low density? Default false

	hyper_z Hyper-diffusion in Z. Default off.

	evolve_log Evolve logarithm of density? Default false.

	diagnose Output additional diagnostics?

	N<name> e.g. “Ne”, “Nd+”
	source Source of particles [/m^3/s] NOTE: This overrides mesh input N<name>_src

	source_only_in_core Zero the source outside the closed field-line region?

	neumann_boundary_average_z Apply Neumann boundaries with Z average?

	
virtual void transform(Options &state) override

	This sets in the state
	species
	<name>
	AA

	charge

	density

	
virtual void finally(const Options &state) override

	Calculate ddt(N).

Requires state components
	species
	<name>
	density

Optional components
	species
	<name>
	velocity If included, requires sound_speed or temperature

	density_source

	fields
	phi If included, ExB drift is calculated

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
std::string name

	Short name of species e.g “e”.

	
BoutReal charge

	Species charge e.g. electron = -1.

	
BoutReal AA

	Atomic mass e.g. proton = 1.

	
Field3D N

	Species density (normalised, evolving)

	
bool bndry_flux

	Allow flows through boundaries?

	
bool poloidal_flows

	Include ExB flow in Y direction?

	
bool neumann_boundary_average_z

	Apply neumann boundary with Z average?

	
BoutReal density_floor

	

	
bool low_n_diffuse

	Parallel diffusion at low density.

	
bool low_n_diffuse_perp

	Perpendicular diffusion at low density.

	
BoutReal hyper_z

	Hyper-diffusion in Z.

	
bool evolve_log

	Evolve logarithm of density?

	
Field3D logN

	Logarithm of density (if evolving)

	
Field3D source

	External input source.

	
Field3D Sn

	Total density source.

	
bool diagnose

	Output additional diagnostics?

File evolve_energy.cxx

File evolve_energy.hxx

Defines

	
EVOLVE_ENERGY_H

	

	
struct EvolveEnergy : public Component

	
#include <evolve_energy.hxx>

Evolves species internal energy in time

Mesh inputs

P<name>_src A source of pressure, in Pascals per second This can be over-ridden by the source option setting.

Public Functions

	
EvolveEnergy(std::string name, Options &options, Solver *solver)

	Inputs

	<name>
	bndry_flux Allow flows through radial boundaries? Default is true

	density_floor Minimum density floor. Default 1e-5 normalised units.

	diagnose Output additional diagnostic fields?

	evolve_log Evolve logarithm of pressure? Default is false

	hyper_z Hyper-diffusion in Z

	kappa_coefficient Heat conduction constant. Default is 3.16 for electrons, 3.9 otherwise

	kappa_limit_alpha Flux limiter, off by default.

	poloidal_flows Include poloidal ExB flows? Default is true

	precon Enable preconditioner? Note: solver may not use it even if enabled.

	thermal_conduction Include parallel heat conduction? Default is true

	E<name> e.g. “Ee”, “Ed+”
	source Source of energy [W / s]. NOTE: This overrides mesh input P<name>_src

	source_only_in_core Zero the source outside the closed field-line region?

	neumann_boundary_average_z Apply Neumann boundaries with Z average?

	
virtual void transform(Options &state) override

	Inputs
	species
	<name>
	density

	velocity

Sets
	species
	<name>
	pressure

	temperature

	
virtual void finally(const Options &state) override

	Optional inputs

	species
	<name>
	velocity. Must have sound_speed or temperature

	energy_source

	collision_rate (needed if thermal_conduction on)

	fields
	phi Electrostatic potential -> ExB drift

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

	
virtual void precon(const Options &state, BoutReal gamma) override

	Preconditioner

Private Members

	
std::string name

	Short name of the species e.g. h+.

	
Field3D E

	Energy (normalised): P + 1/2 m n v^2.

	
Field3D P

	Pressure (normalised)

	
Field3D T

	

	
Field3D N

	Temperature, density.

	
BoutReal adiabatic_index

	Ratio of specific heats, γ = Cp / Cv.

	
BoutReal Cv

	

	
bool bndry_flux

	Heat capacity at constant volume (3/2 for ideal monatomic gas)

	
bool neumann_boundary_average_z

	Apply neumann boundary with Z average?

	
bool poloidal_flows

	

	
bool thermal_conduction

	Include thermal conduction?

	
BoutReal kappa_coefficient

	Leading numerical coefficient in parallel heat flux calculation

	
BoutReal kappa_limit_alpha

	Flux limit if >0.

	
bool evolve_log

	Evolve logarithm of E?

	
Field3D logE

	Natural logarithm of E.

	
BoutReal density_floor

	Minimum density for calculating T.

	
Field3D kappa_par

	Parallel heat conduction coefficient.

	
Field3D source

	External power source.

	
Field3D Se

	Total energy source.

	
BoutReal hyper_z

	Hyper-diffusion.

	
bool diagnose

	Output additional diagnostics?

	
bool enable_precon

	Enable preconditioner?

File evolve_momentum.cxx

File evolve_momentum.hxx

Defines

	
EVOLVE_MOMENTUM_H

	

	
struct EvolveMomentum : public Component

	
#include <evolve_momentum.hxx>

Evolve parallel momentum.

Public Functions

	
EvolveMomentum(std::string name, Options &options, Solver *solver)

	

	
virtual void transform(Options &state) override

	This sets in the state
	species
	<name>
	momentum

	velocity if density is defined

	
virtual void finally(const Options &state) override

	Calculate ddt(NV).

Inputs
	species
	<name>
	density

	velocity

	pressure (optional)

	momentum_source (optional)

	sound_speed (optional, used for numerical dissipation)

	temperature (only needed if sound_speed not provided)

	fields
	phi (optional)

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
std::string name

	Short name of species e.g “e”.

	
Field3D NV

	Species parallel momentum (normalised, evolving)

	
Field3D NV_solver

	Momentum as input from solver.

	
Field3D V

	Species parallel velocity.

	
Field3D momentum_source

	From other components. Stored for diagnostic output.

	
bool bndry_flux

	

	
bool poloidal_flows

	

	
BoutReal density_floor

	

	
BoutReal hyper_z

	Hyper-diffusion.

	
bool diagnose

	Output additional diagnostics?

	
bool fix_momentum_boundary_flux

	Fix momentum flux to boundary condition?

File evolve_pressure.cxx

File evolve_pressure.hxx

Defines

	
EVOLVE_PRESSURE_H

	

	
struct EvolvePressure : public Component

	
#include <evolve_pressure.hxx>

Evolves species pressure in time

Mesh inputs

P<name>_src A source of pressure, in Pascals per second This can be over-ridden by the source option setting.

Public Functions

	
EvolvePressure(std::string name, Options &options, Solver *solver)

	Inputs

	<name>
	bndry_flux Allow flows through radial boundaries? Default is true

	density_floor Minimum density floor. Default 1e-5 normalised units.

	diagnose Output additional diagnostic fields?

	evolve_log Evolve logarithm of pressure? Default is false

	hyper_z Hyper-diffusion in Z

	kappa_coefficient Heat conduction constant. Default is 3.16 for electrons, 3.9 otherwise

	kappa_limit_alpha Flux limiter, off by default.

	poloidal_flows Include poloidal ExB flows? Default is true

	precon Enable preconditioner? Note: solver may not use it even if enabled.

	p_div_v Use p * Div(v) form? Default is v * Grad(p) form

	thermal_conduction Include parallel heat conduction? Default is true

	P<name> e.g. “Pe”, “Pd+”
	source Source of pressure [Pa / s]. NOTE: This overrides mesh input P<name>_src

	source_only_in_core Zero the source outside the closed field-line region?

	neumann_boundary_average_z Apply Neumann boundaries with Z average?

	
virtual void transform(Options &state) override

	Inputs
	species
	<name>
	density

Sets
	species
	<name>
	pressure

	temperature Requires density

	
virtual void finally(const Options &state) override

	Optional inputs

	species
	<name>
	velocity. Must have sound_speed or temperature

	energy_source

	collision_rate (needed if thermal_conduction on)

	fields
	phi Electrostatic potential -> ExB drift

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

	
virtual void precon(const Options &state, BoutReal gamma) override

	Preconditioner

Private Members

	
std::string name

	Short name of the species e.g. h+.

	
Field3D P

	Pressure (normalised)

	
Field3D T

	

	
Field3D N

	Temperature, density.

	
bool bndry_flux

	

	
bool neumann_boundary_average_z

	Apply neumann boundary with Z average?

	
bool poloidal_flows

	

	
bool thermal_conduction

	Include thermal conduction?

	
BoutReal kappa_coefficient

	Leading numerical coefficient in parallel heat flux calculation.

	
BoutReal kappa_limit_alpha

	Flux limit if >0.

	
bool p_div_v

	Use p*Div(v) form? False -> v * Grad(p)

	
bool evolve_log

	Evolve logarithm of P?

	
Field3D logP

	Natural logarithm of P.

	
BoutReal density_floor

	Minimum density for calculating T.

	
BoutReal pressure_floor

	When non-zero pressure is needed.

	
bool low_p_diffuse_perp

	Add artificial cross-field diffusion at low pressure?

	
Field3D kappa_par

	Parallel heat conduction coefficient.

	
Field3D source

	External pressure source.

	
Field3D Sp

	Total pressure source.

	
BoutReal hyper_z

	Hyper-diffusion.

	
bool diagnose

	Output additional diagnostics?

	
bool enable_precon

	Enable preconditioner?

File fixed_density.hxx

Defines

	
FIXED_DENSITY_H

	

	
struct FixedDensity : public Component

	
#include <fixed_density.hxx>

Set ion density to a fixed value

Public Functions

	
inline FixedDensity(std::string name, Options &alloptions, Solver *solver)

	Inputs
	<name>
	AA

	charge

	density value (expression) in units of m^-3

	
inline virtual void transform(Options &state) override

	Sets in the state the density, mass and charge of the species

	species
	<name>
	AA

	charge

	density

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
std::string name

	Short name of species e.g “e”.

	
BoutReal charge

	Species charge e.g. electron = -1.

	
BoutReal AA

	Atomic mass e.g. proton = 1.

	
Field3D N

	Species density (normalised)

File fixed_fraction_ions.cxx

File fixed_fraction_ions.hxx

Defines

	
FIXED_FRACTION_IONS_H

	

	
struct FixedFractionIons : public Component

	
#include <fixed_fraction_ions.hxx>

Set ion densities from electron densities

Public Functions

	
FixedFractionIons(std::string name, Options &options, Solver *solver)

	Inputs
	<name>
	fractions A comma-separated list of pairs separated by @ e.g. ‘d+ @ 0.5, t+ @ 0.5’

	
virtual void transform(Options &state) override

	Required inputs

	species
	e
	density

Sets in the state the density of each species

	species
	<species1>
	density = <fraction1> * electron density

	…

Private Members

	
std::vector<std::pair<std::string, BoutReal>> fractions

	

File fixed_fraction_radiation.hxx

Defines

	
FIXED_FRACTION_RADIATION_H

	

	
template<typename CoolingCurve>
struct FixedFractionRadiation : public Component

	
#include <fixed_fraction_radiation.hxx>

Set ion densities from electron densities

Public Functions

	
inline FixedFractionRadiation(std::string name, Options &alloptions, Solver *solver)

	Inputs
	<name>
	fraction

	
inline virtual void transform(Options &state) override

	Required inputs

	species
	e
	density

	temperature

Sets the electron energy loss

	species
	e
	energy_source

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
std::string name

	

	
CoolingCurve cooling

	The cooling curve L(T) -> Wm^3.

	
BoutReal fraction

	Fixed fraction.

	
bool diagnose

	Output radiation diagnostic?

	
Field3D radiation

	For output diagnostic.

	
BoutReal Tnorm

	

	
BoutReal Nnorm

	

	
BoutReal FreqNorm

	

File fixed_temperature.hxx

Defines

	
FIXED_TEMPERATURE_H

	

	
struct FixedTemperature : public Component

	
#include <fixed_temperature.hxx>

Set species temperature to a fixed value

Public Functions

	
inline FixedTemperature(std::string name, Options &alloptions, Solver *solver)

	Inputs
	<name>
	temperature value (expression) in units of eV

	
inline virtual void transform(Options &state) override

	Sets in the state the temperature and pressure of the species

Inputs
	species
	<name>
	density (optional)

Sets in the state

	species
	<name>
	temperature

	pressure (if density is set)

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
std::string name

	Short name of species e.g “e”.

	
Field3D T

	Species temperature (normalised)

	
Field3D P

	Species pressure (normalised)

	
bool diagnose

	Output additional fields.

File fixed_velocity.hxx

Defines

	
FIXED_VELOCITY_H

	

	
struct FixedVelocity : public Component

	
#include <fixed_velocity.hxx>

Set parallel velocity to a fixed value

Public Functions

	
inline FixedVelocity(std::string name, Options &alloptions, Solver *solver)

	

	
inline virtual void transform(Options &state) override

	This sets in the state
	species
	<name>
	velocity

	momentum

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
std::string name

	Short name of species e.g “e”.

	
Field3D V

	Species velocity (normalised)

File full_velocity.cxx

File full_velocity.hxx

Defines

	
FULL_VELOCITY_H

	

	
struct NeutralFullVelocity : public Component

	
#include <full_velocity.hxx>

Public Functions

	
NeutralFullVelocity(const std::string &name, Options &options, Solver *solver)

	

	
virtual void transform(Options &state) override

	Modify the given simulation state.

	
virtual void finally(const Options &state) override

	Use the final simulation state to update internal state (e.g. time derivatives)

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
Coordinates *coord

	

	
std::string name

	

	
BoutReal AA

	

	
BoutReal Tnorm

	

	
Field2D Nn2D

	

	
Field2D Pn2D

	

	
Vector2D Vn2D

	

	
Field2D Tn2D

	

	
Field2D DivV2D

	

	
Field2D Txr

	

	
Field2D Txz

	

	
Field2D Tyr

	

	
Field2D Tyz

	

	
Field2D Urx

	

	
Field2D Ury

	

	
Field2D Uzx

	

	
Field2D Uzy

	

	
BoutReal gamma_ratio

	

	
BoutReal neutral_viscosity

	

	
BoutReal neutral_bulk

	

	
BoutReal neutral_conduction

	

	
BoutReal neutral_gamma

	

	
bool outflow_ydown

	

File hermes_utils.hxx

Defines

	
HERMES_UTILS_H

	

Functions

	
inline BoutReal floor(BoutReal value, BoutReal min)

	

	
template<typename T, typename = bout::utils::EnableIfField<T>>
inline T clamp(const T &var, BoutReal lo, BoutReal hi, const std::string &rgn = "RGN_ALL")

	

	
template<typename T, typename = bout::utils::EnableIfField<T>>
Ind3D indexAt(const T &f, int x, int y, int z)

	

File hydrogen_charge_exchange.cxx

File hydrogen_charge_exchange.hxx

Defines

	
HYDROGEN_CHARGE_EXCHANGE_H

	

	
struct HydrogenChargeExchange : public Component

	
#include <hydrogen_charge_exchange.hxx>

Hydrogen charge exchange total rate coefficient

p + H(1s) -> H(1s) + p

Reaction 3.1.8 from Amjuel (p43)

Scaled to different isotope masses and finite neutral particle temperatures by using the effective temperature (Amjuel p43)

T_eff = (M/M_1)T_1 + (M/M_2)T_2

Important: If this is included then ion_neutral collisions should probably be disabled in the collisions component, to avoid double-counting.

Subclassed by HydrogenChargeExchangeIsotope< Isotope1, Isotope2 >

Public Functions

	
inline HydrogenChargeExchange(std::string name, Options &alloptions, Solver*)

	
	Parameters:

	alloptions – Settings, which should include:
	units
	eV

	inv_meters_cubed

	seconds

Protected Functions

	
void calculate_rates(Options &atom1, Options &ion1, Options &atom2, Options &ion2, Field3D &R, Field3D &atom_mom, Field3D &ion_mom, Field3D &atom_energy, Field3D &ion_energy)

	Calculate the charge exchange cross-section

atom1 + ion1 -> atom2 + ion2

and transfer of mass, momentum and energy from:

atom1 -> ion2, ion1 -> atom2

Assumes that both atom1 and ion1 have:
	AA

	density

	velocity

	temperature

Sets in all species:
	density_source [If atom1 != atom2 or ion1 != ion2]

	momentum_source

	energy_source

Modifies collision_frequency for atom1 and ion1

Diagnostic output R Reaction rate, transfer of particles in case of different isotopes atom_mom Momentum removed from atom1, added to ion2 ion_mom Momentum removed from ion1, added to atom2 atom_energy Energy removed from atom1, added to ion2 ion_energy Energy removed from ion1, added to atom2

Protected Attributes

	
BoutReal Tnorm

	

	
BoutReal Nnorm

	

	
BoutReal FreqNorm

	Normalisations.

	
template<char Isotope1, char Isotope2>
struct HydrogenChargeExchangeIsotope : public HydrogenChargeExchange

	
#include <hydrogen_charge_exchange.hxx>

Hydrogen charge exchange Templated on a char to allow ‘h’, ‘d’ and ‘t’ species to be treated with the same code

atom + ion -> ion + atom Isotope1 + Isotope2+ -> Isotope1+ + Isotope2

Diagnostics

If diagnose = true is set in the options, then the following diagnostics are saved:
	F<Isotope1><Isotope2>+_cx (e.g. Fhd+_cx) the momentum added to Isotope1 atoms due due to charge exchange with Isotope2 ions. There is a corresponding loss of momentum for the Isotope1 ions d/dt(NVh) = … + Fhd+_cx // Atom momentum source d/dt(NVh+) = … - Fhd+_cx // Ion momentum sink

	E<Isotope1><Isotope2>+_cx Energy added to Isotope1 atoms due to charge exchange with Isotope2 ions. This contributes to two pressure equations d/dt(3/2 Ph) = … + Ehd+_cx d/dt(3/2 Ph+) = … - Ehd+_cx

If Isotope1 != Isotope2 then there is also the source of energy for Isotope2 atoms and a source of particles:
	F<Isotope2>+<Isotope1>_cx Source of momentum for Isotope2 ions, sink for Isotope2 atoms

	E<Isotope2>+<Isotope1>_cx Source of energy for Isotope2 ions, sink for Isotope2 atoms

	S<Isotope1><Isotope2>+_cx Source of Isotope1 atoms due to charge exchange with Isotope2 ions Note: S<Isotope2><Isotope1>+_cx = -S<Isotope1><Isotope2>+_cx For example Shd+_cx contributes to four density equations: d/dt(Nh) = …
	Shd+_cx d/dt(Nh+) = … - Shd+_cx d/dt(Nd) = … - Shd+_cx d/dt(Nd+) = … + Shd+_cx

	Template Parameters:

	
	Isotope1 – The isotope (‘h’, ‘d’ or ‘t’) of the initial atom

	Isotope2 – The isotope (‘h’, ‘d’ or ‘t’) of the initial ion

Public Functions

	
inline HydrogenChargeExchangeIsotope(std::string name, Options &alloptions, Solver *solver)

	

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
bool diagnose

	Outputting diagnostics?

	
Field3D S

	Particle exchange, used if Isotope1 != Isotope2.

	
Field3D F

	

	
Field3D F2

	Momentum exchange.

	
Field3D E

	

	
Field3D E2

	Energy exchange.

File integrate.hxx

Defines

	
INTEGRATE_H

	

Functions

	
template<typename Head, typename ...Tail>
auto firstArg(const Head &head, Tail...)

	Get the first argument from a parameter pack.

	
template<typename CellEdges>
BoutReal cellLeft(BoutReal c, BoutReal m, BoutReal p)

	Return the value at the left of a cell, given cell centre values at this cell and two neighbours

	
template<typename CellEdges>
BoutReal cellRight(BoutReal c, BoutReal m, BoutReal p)

	Return the value at the right of a cell, given cell centre values at this cell and two neighbours

	
template<typename CellEdges = hermes::Limiter, typename Function, typename RegionType>
auto cellAverage(Function func, const RegionType ®ion)

	Take a function of BoutReals, and a region. Return a function which takes fields (e.g. Field2D, Field3D), and for every cell in the region evaluates the function at quadrature points with weights. These weights sum to 1, resulting in volume averaged values.

Uses a limiter to calculate values at cell edges. This is needed so that as Ne goes to zero in a cell then atomic rates also go to zero.

Example Field3D Ne = …, Te = …;

Field3D result = cellAverage([](BoutReal Ne, BoutReal Te) {return Ne*Te;} // The function to evaluate Ne.getRegion(“RGN_NOBNDRY”) // The region to iterate over)(Ne, Te); // The input fields

Note that the order of the arguments to the lambda function is the same as the input fields.

File ion_viscosity.cxx

File ion_viscosity.hxx

Defines

	
ION_VISCOSITY_H

	

	
struct IonViscosity : public Component

	
#include <ion_viscosity.hxx>

Ion viscosity terms

Adds a viscosity to all species which are not electrons

Uses Braginskii collisional form, combined with a SOLPS-like flux limiter.

Needs to be calculated after collisions, because collision frequency is used to calculate parallel viscosity

The ion stress tensor Pi_ci is split into perpendicular and parallel pieces:

Pi_ci = Pi_ciperp + Pi_cipar

In the parallel ion momentum equation the Pi_cipar term is solved as a parallel diffusion, so is treated separately All other terms are added to Pi_ciperp, even if they are not really parallel parts

Public Functions

	
IonViscosity(std::string name, Options &alloptions, Solver*)

	Inputs
	<name>
	eta_limit_alpha: float, default -1 Flux limiter coefficient. < 0 means off.

	perpendicular: bool, default false Include perpendicular flows? Requires curvature vector and phi potential

	
virtual void transform(Options &state) override

	Inputs
	species
	<name> (skips “e”)
	pressure (skips if not present)

	velocity (skips if not present)

	collision_frequency

Sets in the state
	species
	<name>
	momentum_source

	
virtual void outputVars(Options &state) override

	Save variables to the output.

Private Members

	
BoutReal eta_limit_alpha

	Flux limit coefficient.

	
bool perpendicular

	Include perpendicular flow? (Requires phi)

	
Vector2D Curlb_B

	Curvature vector Curl(b/B)

	
bool diagnose

	Output additional diagnostics?

	
std::map<std::string, Diagnostics> diagnostics

	Store diagnostics for each species.

	
struct Diagnostics

	Per-species diagnostics.

Public Members

	
Field3D Pi_ciperp

	Perpendicular part of Pi scalar.

	
Field3D Pi_cipar

	Parallel part of Pi scalar.

File ionisation.cxx

File ionisation.hxx

Defines

	
IONISATION_H

	

	
class Ionisation : public Component

	
#include <ionisation.hxx>

Public Functions

	
Ionisation(std::string name, Options &options, Solver*)

	

	
virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

Private Members

	
UpdatedRadiatedPower atomic_rates = {}

	

	
BoutReal Eionize

	

	
BoutReal Tnorm

	

	
BoutReal Nnorm

	

	
BoutReal FreqNorm

	

File isothermal.cxx

File isothermal.hxx

Defines

	
ISOTHERMAL_H

	

	
struct Isothermal : public Component

	
#include <isothermal.hxx>

Set temperature to a fixed value

Public Functions

	
Isothermal(std::string name, Options &options, Solver*)

	

	
virtual void transform(Options &state) override

	Inputs
	species
	<name>
	density (optional)

Sets in the state

	species
	<name>
	temperature

	pressure (if density is set)

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
std::string name

	

	
BoutReal T

	The normalised temperature.

	
Field3D P

	The normalised pressure.

	
bool diagnose

	Output additional diagnostics?

File loadmetric.cxx

Functions

	
void LoadMetric(BoutReal Lnorm, BoutReal Bnorm)

	

File loadmetric.hxx

Functions

	
void LoadMetric(BoutReal Lnorm, BoutReal Bnorm)

	

File neutral_boundary.cxx

File neutral_boundary.hxx

Defines

	
NEUTRAL_BOUNDARY_H

	

	
struct NeutralBoundary : public Component

	
#include <neutral_boundary.hxx>

Per-species boundary condition for neutral particles at sheath (Y) boundaries.

Sets boundary conditions:
	Free boundary conditions on logarithm of density, temperature and pressure

	No-flow boundary conditions on velocity and momentum.

Adds an energy sink corresponding to a flux of heat to the walls.

Heat flux into the wall is q = gamma_heat * n * T * v_th

where v_th = sqrt(eT/m) is the thermal speed

Public Functions

	
NeutralBoundary(std::string name, Options &options, Solver*)

	

	
virtual void transform(Options &state) override

	state
	species
	<name>
	density Free boundary

	temperature Free boundary

	pressure Free boundary

	velocity [if set] Zero boundary

	momentum [if set] Zero boundary

	energy_source Adds wall losses

Private Members

	
std::string name

	Short name of species e.g “d”.

	
BoutReal gamma_heat

	Heat flux coefficient.

	
bool lower_y

	Boundary condition at lower y?

	
bool upper_y

	Boundary condition at upper y?

File neutral_mixed.cxx

File neutral_mixed.hxx

Defines

	
NEUTRAL_MIXED_H

	

	
struct NeutralMixed : public Component

	
#include <neutral_mixed.hxx>

Evolve density, parallel momentum and pressure for a neutral gas species with cross-field diffusion

Public Functions

	
NeutralMixed(const std::string &name, Options &options, Solver *solver)

	
	Parameters:

	
	name – The name of the species e.g. “h”

	options – Top-level options. Settings will be taken from options[name]

	solver – Time-integration solver to be used

	
virtual void transform(Options &state) override

	Modify the given simulation state.

	
virtual void finally(const Options &state) override

	Use the final simulation state to update internal state (e.g. time derivatives)

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

	
virtual void precon(const Options &state, BoutReal gamma) override

	Preconditioner.

Private Members

	
std::string name

	Species name.

	
Field3D Nn

	

	
Field3D Pn

	

	
Field3D NVn

	

	
Field3D Vn

	Neutral parallel velocity.

	
Field3D Tn

	Neutral temperature.

	
Field3D Nnlim

	

	
Field3D Pnlim

	

	
Field3D Vnlim

	

	
BoutReal AA

	Atomic mass (proton = 1)

	
Field3D Dnn

	Diffusion coefficient.

	
bool sheath_ydown

	

	
bool sheath_yup

	

	
BoutReal nn_floor

	Minimum Nn used when dividing NVn by Nn to get Vn.

	
BoutReal flux_limit

	Diffusive flux limit.

	
BoutReal diffusion_limit

	Maximum diffusion coefficient.

	
bool neutral_viscosity

	include viscosity?

	
bool precondition = {true}

	Enable preconditioner?

	
std::unique_ptr<Laplacian> inv

	Laplacian inversion used for preconditioning.

	
Field3D density_source

	

	
Field3D pressure_source

	External input source.

	
Field3D Sn

	

	
Field3D Sp

	

	
Field3D Snv

	Particle, pressure and momentum source.

	
bool output_ddt

	Save time derivatives?

	
bool diagnose

	Save additional diagnostics?

File neutral_parallel_diffusion.cxx

File neutral_parallel_diffusion.hxx

Defines

	
NEUTRAL_PARALLEL_DIFFUSION_H

	

	
struct NeutralParallelDiffusion : public Component

	
#include <neutral_parallel_diffusion.hxx>

Add effective diffusion of neutrals in a 1D system, by projecting cross-field diffusion onto parallel distance.

Note: This needs to be calculated after the collision frequency, so is a collective component. This therefore applies diffusion to all neutral species i.e. those with no (or zero) charge

If diagnose = true then the following outputs are saved for each neutral species

	D<name>_Dpar Parallel diffusion coefficient e.g. Dhe_Dpar

	S<name>_Dpar Density source due to diffusion

	E<name>_Dpar Energy source due to diffusion

	F<name>_Dpar Momentum source due to diffusion

Public Functions

	
inline NeutralParallelDiffusion(std::string name, Options &alloptions, Solver*)

	

	
virtual void transform(Options &state) override

	Inputs
	species
	<all neutrals>=””> # Applies to all neutral species
	AA

	collision_frequency

	density

	temperature

	pressure [optional, or density * temperature]

	velocity [optional]

	momentum [if velocity set]

Sets
	species
	<name>
	density_source

	energy_source

	momentum_source [if velocity set]

	
virtual void outputVars(Options &state) override

	Save variables to the output.

Private Members

	
BoutReal dneut

	cross-field diffusion projection (B / Bpol)^2

	
bool diagnose

	Output diagnostics?

	
std::map<std::string, Diagnostics> diagnostics

	Store diagnostics for each species.

	
struct Diagnostics

	Per-species diagnostics.

Public Members

	
Field3D Dn

	Diffusion coefficient.

	
Field3D S

	Particle source.

	
Field3D E

	Energy source.

	
Field3D F

	Momentum source.

File noflow_boundary.cxx

File noflow_boundary.hxx

Defines

	
NOFLOW_BOUNDARY_H

	

	
struct NoFlowBoundary : public Component

	
#include <noflow_boundary.hxx>

Public Functions

	
inline NoFlowBoundary(std::string name, Options &alloptions, Solver*)

	

	
virtual void transform(Options &state) override

	Inputs
	species
	<name>
	density [Optional]

	temperature [Optional]

	pressure [Optional]

	velocity [Optional]

	momentum [Optional]

Private Members

	
std::string name

	

	
bool noflow_lower_y

	No-flow boundary on lower y?

	
bool noflow_upper_y

	No-flow boundary on upper y?

File polarisation_drift.cxx

File polarisation_drift.hxx

Defines

	
POLARISATION_DRIFT_H

	

	
struct PolarisationDrift : public Component

	
#include <polarisation_drift.hxx>

Calculates polarisation drift terms for all charged species, both ions and electrons.

Approximates the polarisation drift by a generalised flow potential phi_pol

v_pol = - (A / (Z * B^2)) * Grad_perp(phi_pol)

phi_pol is approximately the time derivative of the electric potential in the frame of the flow, plus an ion diamagnetic contribution

phi_pol is calculated using:

Div(mass_density / B^2 * Grad_perp(phi_pol)) = Div(Jpar) + Div(Jdia) + …

Where the divergence of currents on the right is calculated from:
	species[…][“momentum”] The parallel momentum of charged species

	DivJdia, diamagnetic current, calculated in vorticity component

	DivJcol collisional current, calculated in vorticity component

	DivJextra Other currents, eg. 2D parallel closures

The mass_density quantity is the sum of density * atomic mass for all charged species (ions and electrons)

Public Functions

	
PolarisationDrift(std::string name, Options &options, Solver *solver)

	

	
virtual void transform(Options &state) override

	Inputs

	species
	… All species with both charge and mass
	AA

	charge

	density

	momentum (optional)

	fields
	DivJextra (optional)

	DivJdia (optional)

	DivJcol (optional)

Sets

	species
	… All species with both charge and mass
	density_source

	energy_source (if pressure set)

	momentum_source (if momentum set)

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
std::unique_ptr<Laplacian> phiSolver

	

	
Field2D Bsq

	

	
bool diagnose

	Save diagnostic outputs?

	
Field3D DivJ

	

	
Field3D phi_pol

	

	
bool boussinesq

	

	
BoutReal average_atomic_mass

	

	
BoutReal density_floor

	

File quasineutral.cxx

File quasineutral.hxx

Defines

	
QUASINEUTRAL

	

	
struct Quasineutral : public Component

	
#include <quasineutral.hxx>

Calculate density from sum of other species densities * charge to ensure that net charge = 0

This is useful in simulations where multiple species are being evolved. Note that only one species’ density can be calculated this way, and it should be calculated last once all other densities are known.

Saves the density to the output (dump) files as N<name>

Public Functions

	
Quasineutral(std::string name, Options &alloptions, Solver *solver)

	Inputs

	Parameters:

	
	name – Short name for species e.g. “e”

	alloptions – Component configuration options
	<name>
	charge Required to have a particle charge

	AA Atomic mass

	
virtual void transform(Options &state) override

	Sets in state
	species
	<name>
	density

	charge

	AA

	
virtual void finally(const Options &state) override

	Get the final density for output including any boundary conditions applied

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
std::string name

	Name of this species.

	
BoutReal charge

	The charge of this species.

	
BoutReal AA

	Atomic mass.

	
Field3D density

	The density (for writing to output)

File radiation.cxx

File radiation.hxx

	
class RadiatedPower

	
#include <radiation.hxx>

Subclassed by HutchinsonCarbonRadiation, HydrogenRadiatedPower, InterpRadiatedPower, UpdatedRadiatedPower

Public Functions

	
const Field3D power(const Field3D &Te, const Field3D &Ne, const Field3D &Ni)

	

	
virtual BoutReal power(BoutReal Te, BoutReal ne, BoutReal ni) = 0

	

	
class InterpRadiatedPower : public RadiatedPower

	
#include <radiation.hxx>

Public Functions

	
InterpRadiatedPower(const std::string &file)

	

	
inline virtual BoutReal power(BoutReal, BoutReal, BoutReal)

	

Private Members

	
std::vector<BoutReal> te_array

	

	
std::vector<BoutReal> p_array

	

	
class HydrogenRadiatedPower : public RadiatedPower

	
#include <radiation.hxx>

Rates supplied by Eva Havlicova.

Public Functions

	
inline virtual BoutReal power(BoutReal, BoutReal, BoutReal)

	

	
BoutReal ionisation(BoutReal Te)

	

	
BoutReal recombination(BoutReal n, BoutReal Te)

	

	
BoutReal chargeExchange(BoutReal Te)

	

	
BoutReal excitation(BoutReal Te)

	

	
class UpdatedRadiatedPower : public RadiatedPower

	
#include <radiation.hxx>

Hydrogen rates, fitted by Hannah Willett May 2015 University of York

Public Functions

	
inline virtual BoutReal power(BoutReal, BoutReal, BoutReal)

	

	
BoutReal ionisation(BoutReal T)

	

	
BoutReal recombination(BoutReal n, BoutReal T)

	

	
BoutReal chargeExchange(BoutReal Te)

	

	
BoutReal excitation(BoutReal Te)

	

	
class HutchinsonCarbonRadiation : public RadiatedPower

	
#include <radiation.hxx>

Carbon in coronal equilibrium From I.H.Hutchinson Nucl. Fusion 34 (10) 1337 - 1348 (1994)

Private Functions

	
inline virtual BoutReal power(BoutReal Te, BoutReal ne, BoutReal ni)

	

File recycling.cxx

File recycling.hxx

Defines

	
RECYCLING_H

	

	
struct Recycling : public Component

	
#include <recycling.hxx>

Convert fluxes of species at boundaries

Since this must be calculated after boundary fluxes (e.g. sheath), it is included as a top-level component

Public Functions

	
Recycling(std::string name, Options &alloptions, Solver*)

	Inputs

	<name>
	species A comma-separated list of species to recycle

	<species>
	recycle_as The species to recycle into

	recycle_multiplier The recycled flux multiplier, between 0 and 1

	recycle_energy The energy of the recycled particles [eV]

	
virtual void transform(Options &state) override

	Inputs

	species
	<species>
	density

	velocity

Outputs

	species
	<species>
	density_source

Private Members

	
std::vector<RecycleChannel> channels

	

	
struct RecycleChannel

	
Public Members

	
std::string from

	The species name to recycle.

	
std::string to

	Species to recycle to.

	
BoutReal multiplier

	Flux multiplier. Combination of recycling fraction and species change e.g h+ -> h2 results in 0.5 multiplier

	
BoutReal energy

	Energy of recycled particle (normalised to Tnorm)

File relax_potential.cxx

File relax_potential.hxx

Defines

	
RELAX_POTENTIAL_H

	

	
struct RelaxPotential : public Component

	
#include <relax_potential.hxx>

Evolve vorticity and potential in time.

Uses a relaxation method for the potential, which is valid for steady state, but not for timescales shorter than the relaxation timescale.

Public Functions

	
RelaxPotential(std::string name, Options &options, Solver *solver)

	Options

	<name>
	diamagnetic

	diamagnetic_polarisation

	average_atomic_mass

	bndry_flux

	poloidal_flows

	split_n0

	laplacian Options for the Laplacian phi solver

	
virtual void transform(Options &state) override

	Optional inputs

	species
	pressure and charge => Calculates diamagnetic terms [if diamagnetic=true]

	pressure, charge and mass => Calculates polarisation current terms [if diamagnetic_polarisation=true]

Sets in the state
	species
	[if has pressure and charge]
	energy_source

	fields
	vorticity

	phi Electrostatic potential

	DivJdia Divergence of diamagnetic current [if diamagnetic=true]

Note: Diamagnetic current calculated here, but could be moved to a component with the diamagnetic drift advection terms

	
virtual void finally(const Options &state) override

	Optional inputs
	fields
	DivJextra Divergence of current, including parallel current Not including diamagnetic or polarisation currents

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
Field3D Vort

	

	
Field3D phi1

	

	
Field3D phi

	

	
bool exb_advection

	

	
bool diamagnetic

	

	
bool diamagnetic_polarisation

	

	
bool boussinesq

	Use the Boussinesq approximation?

	
BoutReal average_atomic_mass

	

	
bool poloidal_flows

	Include poloidal ExB flow?

	
bool bndry_flux

	Allow flows through radial boundaries?

	
bool sheath_boundary

	Set outer boundary to j=0?

	
Field2D Bsq

	SQ(coord->Bxy)

	
Vector2D Curlb_B

	Curvature vector Curl(b/B)

	
BoutReal lambda_1

	

	
BoutReal lambda_2

	Relaxation parameters.

File scale_timederivs.hxx

Defines

	
SCALE_TIMEDERIVS_H

	

	
struct ScaleTimeDerivs : public Component

	
#include <scale_timederivs.hxx>

Scale time derivatives of the system

This is intended for steady-state calculations where the aim is to reach ddt -> 0

Public Functions

	
inline ScaleTimeDerivs(std::string, Options&, Solver*)

	

	
inline virtual void transform(Options &state) override

	Sets in the state

	scale_timederivs

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
Field3D scaling

	

File set_temperature.hxx

Defines

	
SET_TEMPERATURE_H

	

	
struct SetTemperature : public Component

	
#include <set_temperature.hxx>

Set species temperature to the temperature of another species

Example

[hermes] components = e, d, …

[e] type = … // Evolve Te

[d] type = set_temperature, …

temperature_from = e // Set Td = Te

Public Functions

	
inline SetTemperature(std::string name, Options &alloptions, Solver *solver)

	Inputs
	<name>
	temperature_from name of species

	
inline virtual void transform(Options &state) override

	Inputs
	species
	<temperature_from>
	temperature

Sets in the state:
	species
	<name>
	temperature

	pressure (if density is set)

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
std::string name

	Short name of species e.g “e”.

	
std::string temperature_from

	The species that the temperature is taken from.

	
Field3D T

	The temperature.

	
bool diagnose

	Output diagnostics?

File sheath_boundary.cxx

File sheath_boundary.hxx

Defines

	
SHEATH_BOUNDARY_H

	

	
struct SheathBoundary : public Component

	
#include <sheath_boundary.hxx>

Boundary condition at the wall in Y

This is a collective component, because it couples all charged species

These are based on “Boundary conditions for the multi-ion magnetized plasma-wall transition” by D.Tskhakaya, S.Kuhn. JNM 337-339 (2005), 405-409

Notes:
	The approximation used here is for ions having similar gyro-orbit sizes

	No boundary condition is applied to neutral species

	Boundary conditions are applied to field-aligned fields using to/fromFieldAligned

Public Functions

	
SheathBoundary(std::string name, Options &options, Solver*)

	Input options

	<name> e.g. “sheath_boundary”
	lower_y Boundary on lower y?

	upper_y Boundary on upper y?

	wall_potential Voltage of the wall [Volts]

	floor_potential Apply floor to sheath potential?

	secondary_electron_coef Effective secondary electron emission coefficient

	sin_alpha Sine of the angle between magnetic field line and wall surface (0 to 1)

	always_set_phi Always set phi field? Default is to only modify if already set

	
virtual void transform(Options &state) override

	Inputs

	species
	e
	density

	temperature

	pressure Optional

	velocity Optional

	mass Optional

	adiabatic Optional. Ratio of specific heats, default 5/3.

	<ions> if charge is set (i.e. not neutrals)
	charge

	mass

	density

	temperature

	pressure Optional

	velocity Optional. Default 0

	momentum Optional. Default mass * density * velocity

	adiabatic Optional. Ratio of specific heats, default 5/3.

	fields
	phi Optional. If not set, calculated at boundary (see note below)

Outputs

	species
	e
	density Sets boundary

	temperature Sets boundary

	velocity Sets boundary

	energy_source

	<ions>
	density Sets boundary

	temperature Sets boundary

	velocity Sets boundary

	momentum Sets boundary

	energy_source

	fields
	phi Sets boundary

If the field phi is set, then this is used in the boundary condition. If not set, phi at the boundary is calculated and stored in the state. Note that phi in the domain will not be set, so will be invalid data.

Private Members

	
BoutReal Ge

	

	
BoutReal sin_alpha

	

	
bool lower_y

	

	
bool upper_y

	

	
bool always_set_phi

	Set phi field?

	
Field3D wall_potential

	Voltage at the wall. Normalised units.

	
bool floor_potential

	Apply floor to sheath potential?

File sheath_boundary_insulating.cxx

File sheath_boundary_insulating.hxx

Defines

	
SHEATH_BOUNDARY_INSULATING_H

	

	
struct SheathBoundaryInsulating : public Component

	
#include <sheath_boundary_insulating.hxx>

Insulating sheath boundary condition at the wall in Y

This is a collective component, because it couples all charged species

Adapted from the sheath_boundary component, but always sets the current density to zero

Public Functions

	
SheathBoundaryInsulating(std::string name, Options &options, Solver*)

	

	
virtual void transform(Options &state) override

	Inputs
	species
	e
	density

	temperature

	pressure Optional

	velocity Optional

	mass Optional

	adiabatic Optional. Ratio of specific heats, default 5/3.

	<ions> if charge is set (i.e. not neutrals)
	charge

	mass

	density

	temperature

	pressure Optional

	velocity Optional. Default 0

	momentum Optional. Default mass * density * velocity

	adiabatic Optional. Ratio of specific heats, default 5/3.

	fields
	phi Optional. If not set, calculated at boundary (see note below)

Outputs
	species
	e
	density Sets boundary

	temperature Sets boundary

	velocity Sets boundary

	energy_source

	<ions>
	density Sets boundary

	temperature Sets boundary

	velocity Sets boundary

	momentum Sets boundary

	energy_source

	fields
	phi Sets boundary

If the field phi is set, then this is used in the boundary condition. If not set, phi at the boundary is calculated and stored in the state. Note that phi in the domain will not be set, so will be invalid data.

Private Members

	
BoutReal Ge

	

	
BoutReal sin_alpha

	

	
bool lower_y

	

	
bool upper_y

	

	
BoutReal gamma_e

	Electron sheath heat transmission.

File sheath_boundary_simple.cxx

File sheath_boundary_simple.hxx

Defines

	
SHEATH_BOUNDARY_SIMPLE_H

	

	
struct SheathBoundarySimple : public Component

	
#include <sheath_boundary_simple.hxx>

Boundary condition at the wall in Y

This is a collective component, because it couples all charged species

This implements a simple boundary condition, where each species goes to their own sound velocity at the sheath entrance.

Notes:
	It is recommended to use SheathBoundary rather than SheathBoundarySimple; this is here for comparison to that more complete model.

Public Functions

	
SheathBoundarySimple(std::string name, Options &options, Solver*)

	Input options

	<name> e.g. “sheath_boundary_simple”
	lower_y Boundary on lower y?

	upper_y Boundary on upper y?

	gamma_e Electron sheath heat transmission coefficient

	gamma_i Ion sheath heat transmission coefficient

	sheath_ion_polytropic Ion polytropic coefficient in Bohm sound speed. Default 1.

	wall_potential Voltage of the wall [Volts]

	secondary_electron_coef Effective secondary electron emission coefficient

	sin_alpha Sine of the angle between magnetic field line and wall surface (0 to 1)

	always_set_phi Always set phi field? Default is to only modify if already set

	
virtual void transform(Options &state) override

	Inputs

	species
	e
	density

	temperature

	pressure Optional

	velocity Optional

	mass Optional

	adiabatic Optional. Ratio of specific heats, default 5/3.

	<ions> if charge is set (i.e. not neutrals)
	charge

	mass

	density

	temperature

	pressure Optional

	velocity Optional. Default 0

	momentum Optional. Default mass * density * velocity

	adiabatic Optional. Ratio of specific heats, default 5/3.

	fields
	phi Optional. If not set, calculated at boundary (see note below)

Outputs

	species
	e
	density Sets boundary

	temperature Sets boundary

	velocity Sets boundary

	energy_source

	<ions>
	density Sets boundary

	temperature Sets boundary

	velocity Sets boundary

	momentum Sets boundary

	energy_source

	fields
	phi Sets boundary

If the field phi is set, then this is used in the boundary condition. If not set, phi at the boundary is calculated and stored in the state. Note that phi in the domain will not be set, so will be invalid data.

Private Members

	
BoutReal Ge

	

	
BoutReal sin_alpha

	

	
BoutReal gamma_e

	Electron sheath heat transmission.

	
BoutReal gamma_i

	Ion sheath heat transmission.

	
BoutReal sheath_ion_polytropic

	Polytropic coefficient in sheat velocity.

	
bool lower_y

	

	
bool upper_y

	

	
bool always_set_phi

	Set phi field?

	
Field3D wall_potential

	Voltage of the wall. Normalised units.

File sheath_closure.cxx

File sheath_closure.hxx

Defines

	
SHEATH_CLOSURE_H

	

	
struct SheathClosure : public Component

	
#include <sheath_closure.hxx>

2D closure, modelling currents through a sheath

This should only be used where one grid cell is used in y (ny=1). For domains with multiple Y points, use sheath_boundary

Public Functions

	
SheathClosure(std::string name, Options &options, Solver*)

	Inputs
	units
	meters Length normalisation

	<name>
	connection_length Parallel connection length in meters

	
virtual void transform(Options &state) override

	Inputs
	fields
	phi Electrostatic potential

Optional inputs
	species
	density

	pressure

Modifies
	species
	e
	density_source (If density present)

	density_source and energy_source (If sinks=true)

	fields
	DivJdia Divergence of current

Private Members

	
BoutReal L_par

	

	
BoutReal sheath_gamma

	

	
BoutReal sheath_gamma_ions

	

	
BoutReal offset

	

	
bool sinks

	

File simple_conduction.hxx

Defines

	
SIMPLE_CONDUCTION_H

	

	
struct SimpleConduction : public Component

	
#include <simple_conduction.hxx>

Simplified models of parallel heat conduction

Intended mainly for testing.

Expressions taken from: https://farside.ph.utexas.edu/teaching/plasma/lectures1/node35.html

Public Functions

	
inline SimpleConduction(std::string name, Options &alloptions, Solver*)

	

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

Private Members

	
std::string name

	Name of the species e.g. “e”.

	
BoutReal kappa0

	Pre-calculated constant in heat conduction coefficient.

	
BoutReal Nnorm

	

	
BoutReal Tnorm

	Normalisation coefficients.

	
BoutReal temperature

	Fix temperature if > 0.

	
BoutReal density

	Fix density if > 0.

	
bool boundary_flux

	Allow flux through sheath boundaries?

File snb_conduction.cxx

File snb_conduction.hxx

Defines

	
SNB_CONDUCTION_H

	

	
struct SNBConduction : public Component

	
#include <snb_conduction.hxx>

Calculate electron heat flux using the Shurtz-Nicolai-Busquet (SNB) model

This component will only calculate divergence of heat flux for the electron (e) species.

Usage

Add as a top-level component after both electron temperature and collision times have been calculated.

Important: If evolving electron pressure, disable thermal conduction or that will continue to add Spitzer heat conduction.

[hermes]
components = e, ..., collisions, snb_conduction

[e]
type = evolve_pressure, ...
thermal_conduction = false # For evolve_pressure

[snb_conduction]
diagnose = true # Saves heat flux diagnostics

Useful references:

	Braginskii equations by R.Fitzpatrick: http://farside.ph.utexas.edu/teaching/plasma/Plasmahtml/node35.html

	J.P.Brodrick et al 2017: https://doi.org/10.1063/1.5001079 and https://arxiv.org/abs/1704.08963

	Shurtz, Nicolai and Busquet 2000: https://doi.org/10.1063/1.1289512

Public Functions

	
inline SNBConduction(std::string name, Options &alloptions, Solver*)

	Inputs
	<name>
	diagnose Saves Div_Q_SH and Div_Q_SNB

	
virtual void transform(Options &state) override

	Inputs
	species
	e
	density

	collision_frequency

Sets
	species
	e
	energy_source

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
bout::HeatFluxSNB snb

	

	
Field3D Div_Q_SH

	

	
Field3D Div_Q_SNB

	Divergence of heat fluxes.

	
bool diagnose

	Output additional diagnostics?

File solkit_hydrogen_charge_exchange.cxx

File solkit_hydrogen_charge_exchange.hxx

Defines

	
SOLKIT_HYDROGEN_CHARGE_EXCHANGE_H

	

	
struct SOLKITHydrogenChargeExchange : public Component

	
#include <solkit_hydrogen_charge_exchange.hxx>

SOL-KiT Hydrogen charge exchange total rate coefficient

Subclassed by SOLKITHydrogenChargeExchangeIsotope< Isotope >

Public Functions

	
inline SOLKITHydrogenChargeExchange(std::string, Options &alloptions, Solver*)

	
	Parameters:

	alloptions – Settings, which should include:
	units
	inv_meters_cubed

	seconds

	
void calculate_rates(Options &atom, Options &ion)

	Calculate the charge exchange cross-section

atom + ion -> atom + ion

Assumes that both atom and ion have:
	AA

	density

	velocity

Sets in all species:
	momentum_source

Protected Attributes

	
BoutReal Nnorm

	

	
BoutReal rho_s0

	Normalisations.

	
template<char Isotope>
struct SOLKITHydrogenChargeExchangeIsotope : public SOLKITHydrogenChargeExchange

	
#include <solkit_hydrogen_charge_exchange.hxx>

Hydrogen charge exchange Templated on a char to allow ‘h’, ‘d’ and ‘t’ species to be treated with the same code

	Template Parameters:

	Isotope – The isotope (‘h’, ‘d’ or ‘t’) of the atom and ion

Public Functions

	
inline SOLKITHydrogenChargeExchangeIsotope(std::string name, Options &alloptions, Solver *solver)

	

	
inline virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

File solkit_neutral_parallel_diffusion.cxx

File solkit_neutral_parallel_diffusion.hxx

Defines

	
SOLKIT_NEUTRAL_PARALLEL_DIFFUSION_H

	

	
struct SOLKITNeutralParallelDiffusion : public Component

	
#include <solkit_neutral_parallel_diffusion.hxx>

Add effective diffusion of neutrals in a 1D system

This version is intended to match the calculation of neutral diffusion in SOL-KiT (ca 2022).

Public Functions

	
inline SOLKITNeutralParallelDiffusion(std::string name, Options &alloptions, Solver*)

	alloptions
	units
	eV

	meters

	inv_meters_cubed

	<name>
	neutral_temperature [eV]

	
virtual void transform(Options &state) override

	Inputs
	species
	<all neutrals>=””> # Applies to all neutral species
	AA

	density

Sets
	species
	<name>
	density_source

Private Members

	
BoutReal neutral_temperature

	Fixed neutral t.

	
BoutReal area_norm

	Area normalisation [m^2].

File sound_speed.cxx

File sound_speed.hxx

Defines

	
SOUND_SPEED_H

	

	
struct SoundSpeed : public Component

	
#include <sound_speed.hxx>

Calculate the system sound speed

This uses the sum of all species pressures and mass densities so should run after those have been set.

Public Functions

	
inline SoundSpeed(std::string name, Options &alloptions, Solver*)

	

	
virtual void transform(Options &state) override

	This sets in the state
	sound_speed The collective sound speed, based on total pressure and total mass density

	fastest_wave The highest species sound speed at each point in the domain

Optional inputs:
	species
	… // Iterates over all species
	density

	AA // Atomic mass

	pressure

Private Members

	
bool electron_dynamics

	Include electron sound speed?

	
bool alfven_wave

	Include Alfven wave speed?

	
BoutReal beta_norm = {0.0}

	Normalisation factor for Alfven speed.

	
BoutReal temperature_floor

	Minimum temperature when calculating speed.

File thermal_force.cxx

File thermal_force.hxx

Defines

	
THERMAL_FORCE_H

	

	
struct ThermalForce : public Component

	
#include <thermal_force.hxx>

Simple calculation of the thermal force

Important: This implements a quite crude approximation, which is intended for initial development and testing. The expressions used are only valid for trace heavy ions and light main ion species, and would not be valid for Helium impurities in a D-T plasma, for example. For this reason only collisions where one ion has an atomic mass < 4, and the other an atomic mass > 10 are considered. Warning messages will be logged for species combinations which are not calculated.

Options used:

	<name>
	electron_ion : bool Include electron-ion collisions?

	ion_ion : bool Include ion-ion elastic collisions?

Public Functions

	
inline ThermalForce(std::string name, Options &alloptions, Solver*)

	

	
virtual void transform(Options &state) override

	Inputs
	species
	e [if electron_ion true]
	charge

	density

	temperature

	<species>
	charge [Checks, skips species if not set]

	AA

	temperature [If AA < 4 i.e. “light” species]

Outputs
	species
	e
	momentum_source [if electron_ion true]

	<species> [if AA < 4 (“light”) or AA > 10 (“heavy”)]
	momentum_source

Private Members

	
bool electron_ion

	Include electron-ion collisions?

	
bool ion_ion

	Include ion-ion elastic collisions?

	
bool first_time = {true}

	True the first time transform() is called.

File transform.cxx

File transform.hxx

Defines

	
TRANSFORM_H

	

	
struct Transform : public Component

	
#include <transform.hxx>

Apply changes to the state

Public Functions

	
Transform(std::string name, Options &options, Solver*)

	

	
virtual void transform(Options &state) override

	Modify the given simulation state All components must implement this function

Private Members

	
std::map<std::string, std::string> transforms

	

File upstream_density_feedback.cxx

File upstream_density_feedback.hxx

Defines

	
UPSTREAM_DENSITY_FEEDBACK_H

	

	
struct UpstreamDensityFeedback : public Component

	
#include <upstream_density_feedback.hxx>

Adds a time-varying density source, depending on the difference between the upstream density at y=0 and the specified value

Public Functions

	
inline UpstreamDensityFeedback(std::string name, Options &alloptions, Solver*)

	Inputs
	<name> (e.g. “d+”)
	density_upstream Upstream density (y=0) in m^-3

	density_controller_p Feedback proportional to error

	density_controller_i Feedback proportional to error integral

	density_integral_positive Force integral term to be positive? (default: false)

	density_source_positive Force density source to be positive? (default: true)

	diagnose Output diagnostic information?

	N<name> (e.g. “Nd+”)
	source_shape The initial source that is scaled by a time-varying factor

	
virtual void transform(Options &state) override

	Inputs
	<name>
	density

Outputs

	<name>
	density_source

	
inline virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

	
inline virtual void restartVars(Options &state) override

	Add extra fields to restart files.

Private Members

	
std::string name

	The species name.

	
BoutReal density_upstream

	Normalised upstream density.

	
BoutReal density_controller_p

	

	
BoutReal density_controller_i

	PI controller parameters.

	
BoutReal error

	

	
BoutReal density_error_integral = {0.0}

	Time integral of the error.

	
bool density_integral_positive

	Force integral term to be positive?

	
bool density_source_positive

	Force source to be positive?

	
BoutReal density_error_lasttime = {-1.0}

	

	
BoutReal density_error_last = {0.0}

	

	
Field3D density_source_shape

	This shape source is scaled up and down.

	
BoutReal source_multiplier

	Factor to multiply source.

	
BoutReal proportional_term

	

	
BoutReal integral_term

	Components of resulting source for diagnostics.

	
bool diagnose

	Output diagnostic information?

File vorticity.cxx

File vorticity.hxx

Defines

	
VORTICITY_H

	

	
struct Vorticity : public Component

	
#include <vorticity.hxx>

Evolve electron density in time

Public Functions

	
Vorticity(std::string name, Options &options, Solver *solver)

	Options

	<name>
	average_atomic_mass: float, default 2.0 Weighted average ion atomic mass for polarisation current

	bndry_flux: bool, default true Allow flows through radial (X) boundaries?

	collisional_friction: bool, default false Damp vorticity based on mass-weighted collision frequency?

	diagnose: bool, false Output additional diagnostics?

	diamagnetic: bool, default true Include diamagnetic current, using curvature vector?

	diamagnetic_polarisation: bool, default true Include ion diamagnetic drift in polarisation current?

	exb_advection: bool, default true Include ExB advection (nonlinear term)?

	hyper_z: float, default -1.0 Hyper-viscosity in Z. < 0 means off

	laplacian: subsection Options for the Laplacian phi solver

	phi_boundary_relax: bool, default false Relax radial phi boundaries towards zero-gradient?

	phi_boundary_timescale: float, 1e-4 Timescale for phi boundary relaxation [seconds]

	phi_dissipation: bool, default true Parallel dissipation of potential (Recommended)

	poloidal_flows: bool, default true Include poloidal ExB flow?

	sheath_boundary: bool, default false If phi_boundary_relax is false, set the radial boundary to the sheath potential?

	split_n0: bool, default false Split phi into n=0 and n!=0 components?

	viscosity: Field2D, default 0.0 Kinematic viscosity [m^2/s]

	vort_dissipation: bool, default false Parallel dissipation of vorticity?

	
virtual void transform(Options &state) override

	Optional inputs

	species
	pressure and charge => Calculates diamagnetic terms [if diamagnetic=true]

	pressure, charge and mass => Calculates polarisation current terms [if diamagnetic_polarisation=true]

Sets in the state
	species
	[if has pressure and charge]
	energy_source

	fields
	vorticity

	phi Electrostatic potential

	DivJdia Divergence of diamagnetic current [if diamagnetic=true]

Note: Diamagnetic current calculated here, but could be moved to a component with the diamagnetic drift advection terms

	
virtual void finally(const Options &state) override

	Optional inputs
	fields
	DivJextra Divergence of current, including parallel current Not including diamagnetic or polarisation currents

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

	
inline virtual void restartVars(Options &state) override

	Add extra fields to restart files.

Private Members

	
Field3D Vort

	

	
Field3D phi

	

	
std::unique_ptr<Laplacian> phiSolver

	

	
Field3D Pi_hat

	Contribution from ion pressure, weighted by atomic mass / charge.

	
bool exb_advection

	

	
bool exb_advection_simplified

	

	
bool diamagnetic

	

	
bool diamagnetic_polarisation

	

	
BoutReal average_atomic_mass

	

	
bool poloidal_flows

	Include poloidal ExB flow?

	
bool bndry_flux

	Allow flows through radial boundaries?

	
bool collisional_friction

	Damping of vorticity due to collisional friction.

	
bool sheath_boundary

	Set outer boundary to j=0?

	
bool vort_dissipation

	Parallel dissipation of vorticity.

	
bool phi_dissipation

	Parallel dissipation of potential.

	
bool phi_sheath_dissipation

	Dissipation at the sheath if phi < 0.

	
bool phi_boundary_relax

	Relax boundary to zero-gradient.

	
BoutReal phi_boundary_timescale

	Relaxation timescale [normalised].

	
BoutReal phi_boundary_last_update

	Time when last updated.

	
bool split_n0

	

	
LaplaceXY *laplacexy

	

	
Field2D Bsq

	

	
Vector2D Curlb_B

	

	
BoutReal hyper_z

	Hyper-viscosity in Z.

	
Field2D viscosity

	Kinematic viscosity.

	
Field3D DivJdia

	

	
Field3D DivJcol

	

	
bool diagnose

	Output additional diagnostics?

File zero_current.cxx

File zero_current.hxx

Defines

	
ZERO_CURRENT

	

	
struct ZeroCurrent : public Component

	
#include <zero_current.hxx>

Set the velocity of a species so that there is no net current, by summing the current from other species.

This is most often used in the electron species, but does not need to be.

Public Functions

	
ZeroCurrent(std::string name, Options &alloptions, Solver*)

	Inputs

	Parameters:

	
	name – Short name for species e.g. “e”

	alloptions – Component configuration options
	<name>
	charge (must not be zero)

	
virtual void transform(Options &state) override

	Required inputs
	species
	<name>
	density

	charge

	<one or=”” more=”” other=”” species>=””>
	density

	velocity

	charge

Sets in the state
	species
	<name>
	velocity

	
inline virtual void finally(const Options &state) override

	Use the final simulation state to update internal state (e.g. time derivatives)

	
virtual void outputVars(Options &state) override

	Add extra fields for output, or set attributes e.g docstrings.

Private Members

	
std::string name

	Name of this species.

	
BoutReal charge

	The charge of this species.

	
Field3D velocity

	Species velocity (for writing to output)

 nav.xhtml

 Table of Contents

 		
 Welcome to Hermes-3 documentation!

 		
 Introduction

 		
 Getting started

 		
 Installing

 		
 Building with PETSC

 		
 Numerical methods

 		
 Examples

 		
 1D flux-tube

 		
 1D periodic domain, Te and Ti

 		
 1D Scrape-off Layer (SOL)

 		
 2D drift-plane

 		
 Blob2d

 		
 Blob2D-Te-Ti

 		
 2D-drift-plane-turbulence-te-ti

 		
 2D axisymmetric tokamak

 		
 heat-transport

 		
 recycling-dthene

 		
 Tests

 		
 1D fluid (MMS)

 		
 Sod shock

 		
 Toro test 1

 		
 Toro test 2

 		
 Toro test 3

 		
 Toro test 4

 		
 Toro test 5

 		
 Tokamak axisymmetric transport

 		
 Finding steady state solutions

 		
 Backward Euler solver

 		
 cvode solver

 		
 Mesh interpolation

 		
 Post-processing

 		
 Code structure

 		
 Simulation state

 		
 Components

 		
 Component scheduler

 		
 Components

 		
 Species density

 		
 fixed_density

 		
 evolve_density

 		
 upstream_density_feedback

 		
 fixed_fraction_ions

 		
 quasineutral

 		
 Species pressure and temperature

 		
 isothermal

 		
 fixed_temperature

 		
 evolve_pressure

 		
 evolve_energy

 		
 SNB nonlocal heat flux

 		
 Species parallel dynamics

 		
 fixed_velocity

 		
 evolve_momentum

 		
 zero_current

 		
 electron_force_balance

 		
 electron_viscosity

 		
 ion_viscosity

 		
 simple_conduction

 		
 Drifts

 		
 diamagnetic_drift

 		
 polarisation_drift

 		
 Neutral gas models

 		
 Boundary conditions

 		
 noflow_boundary

 		
 neutral_boundary

 		
 Collective quantities

 		
 sound_speed

 		
 neutral_parallel_diffusion

 		
 collisions

 		
 thermal_force

 		
 recycling

 		
 Atomic and molecular reactions

 		
 Hydrogen

 		
 Helium

 		
 Neon

 		
 Fixed fraction radiation

 		
 Electromagnetic fields

 		
 vorticity

 		
 relax_potential

 		
 electromagnetic

 		
 Numerical methods

 		
 Parallel dynamics

 		
 Boundaries

_static/plus.png

_static/minus.png

_static/file.png

_images/sod_shock.png
10

0.8

0.4

02

—n

o

n =100 /,=0.0199
—— n=4001=0.0125

1600

0.00896

0.0

02

0.4

0.6

Location x

_images/pe_nvt_nne_2d.png
Height [m]

Electron pressure [Pa]

0.2

0.7 0.8 0.9 1.0 11
Major radius [m]

3.094

2.652

2.210

1.768

1.326

0.884

0.442

0.000

Tritium parallel flux [m—2s7!]

0.7 0.8 0.9
Major radius [m]

1.0

11

le2l

1.047

0.698

0.349

0.000

—-0.349

—0.698

-1.047

Neon atom density [m]

0.7

0.8 0.9
Major radius [m]

1.0

11

lel6

1.013

0.868

0.723

0.579

0.434

0.289

0.145

0.000

_images/toro-2.png
10

0.8

0.6

0.4

02

0.0

Density

Velocity

Pressure

1)

— t=0.0s
—— t=03s
— t=0.65

50

50

100

50 100

_images/sod_shock_energy.png
10

0.8

0.4

02

—n

o

n =100 ,=0.0204
—— n=400/=0.0114

1600

0.00716

0.0

02

0.4

0.6

Location x

0.8

10

_images/toro-3.png
Density p

100 /;=0.254
400 /;=0.298
1600 /, =0.339

Location x

_images/toro-3-energy.png
Density p

4.0

35

3.0

2.5

2.0

15

10

05

100 /;=0.263
400 1=0.178
1600 /, =0.102

Location x

_images/1d_te_ti.png
Time 4

110

1.08

M M
S 3
ainssaud uol

102

1.00

120

100

80

60

40

20

x index

_images/1d_recycling.png
Temperature [eV]

140

120

100

80

60

40

20

Time 20

1e19

Electron
— lon
~-- Neutral

100

150

200
Cell number

250

300

3.0

2.5

2.0

15

10

05

0.0

Density [m™-3]

_images/blob2d.png

_images/blob2d-te-ti.png

_images/fluid_norm.png
Error norm

1072

1072

107*

107°

1076

h (Ni)

I (Ni)
Order 2.0
b (P)

I (Pi)
Order 2.0
 (NVi)
I (NVi)
Order 2.0

EEEEREER

1072

Mesh spacing 6y

1072

