
Hermes-3 Documentation
Release 0.1.0

The BOUT++ team

Jun 16, 2023

CONTENTS

1 Introduction 1

2 Getting started 3
2.1 Installing . 3
2.2 Building with PETSC . 4
2.3 Numerical methods . 4

3 Examples 5
3.1 1D flux-tube . 5
3.2 2D drift-plane . 8
3.3 2D axisymmetric tokamak . 11

4 Tests 15
4.1 1D fluid (MMS) . 15
4.2 Sod shock . 16
4.3 Toro test 1 . 17
4.4 Toro test 2 . 17
4.5 Toro test 3 . 17
4.6 Toro test 4 . 19
4.7 Toro test 5 . 19

5 Tokamak axisymmetric transport 21
5.1 Finding steady state solutions . 21
5.2 Post-processing . 22

6 Code structure 23
6.1 Simulation state . 23
6.2 Components . 25
6.3 Component scheduler . 26

7 Components 29
7.1 Species density . 29
7.2 Species pressure and temperature . 33
7.3 Species parallel dynamics . 40
7.4 electron_viscosity . 43
7.5 ion_viscosity . 44
7.6 simple_conduction . 46
7.7 Drifts . 47
7.8 Neutral gas models . 49
7.9 Boundary conditions . 49
7.10 Collective quantities . 51

i

7.11 Atomic and molecular reactions . 59
7.12 Electromagnetic fields . 65

8 Numerical methods 71
8.1 Parallel dynamics . 71

Index 73

ii

CHAPTER

ONE

INTRODUCTION

Hermes-3 is a plasma simulation model built on BOUT++, developed mainly for simulating the edge of magnetically
confined plasmas such as tokamaks. The source code is available on Github. The main aim of this model is multi-
species simulation of fusion reactors, where the plasma will contain a mixture of deuterium, tritium, helium and other
species.

An unusual feature of this model is that it is organised into reusable components, which can be tested individually and
then configured at run-time. For example a transport simulation with deuterium and tritium ions and atoms has an input
file specifying the components

[hermes]
components = d+, d, t+, t, e, collisions, sheath_boundary, recycling, reactions

The governing equations for each species are specified e.g.

[d+]
type = evolve_density, evolve_momentum, evolve_pressure, anomalous_diffusion
AA = 2 # Atomic mass
charge = 1

and other components have their configuration options e.g. for reactions

[reactions]
type = (

d + e -> d+ + 2e, # Deuterium ionisation
t + e -> t+ + 2e, # Tritium ionisation
)

1

http://boutproject.github.io/
https://github.com/bendudson/hermes-3

Hermes-3 Documentation, Release 0.1.0

2 Chapter 1. Introduction

CHAPTER

TWO

GETTING STARTED

2.1 Installing

Only CMake is supported for building Hermes-3 and running the tests. During configuration BOUT++ will be automat-
ically downloaded as a submodule, together with some dependencies. NetCDF and FFTW are assumed to be installed
already. The SUNDIALS library is strongly recommended for time-dependent simulations, and PETSc is needed to
run some of the steady-state transport solver examples.

If you only want to run time-dependent simulations, then the recommended way to build Hermes-3 links to the SUN-
DIALS library:

1. Configure with cmake, downloading and linking to SUNDIALS:

cmake . -B build -DBOUT_DOWNLOAD_SUNDIALS=ON

2. Build, compiling Hermes-3 and all dependencies:

cmake --build build

3. Run the unit and integrated tests to check that everything is working:

cd build
ctest

Note that the integrated tests require MPI, and so may not run on the head nodes of many computing clusters.

The CMake configuration can be customised: See the BOUT++ documentation for examples of using cmake arguments,
or edit the compile options interactively before building:

ccmake . -B build

If you have already installed BOUT++ and want to use that rather than configure and build BOUT++ again, set
HERMES_BUILD_BOUT to OFF and pass CMake the path to the BOUT++ build directory e.g.

cmake . -B build -DHERMES_BUILD_BOUT=OFF -DCMAKE_PREFIX_PATH=$HOME/BOUT-dev/build

Note that Hermes-3 currently requires BOUT++ version 5.

3

https://github.com/boutproject/BOUT-dev/
https://www.unidata.ucar.edu/software/netcdf/
https://www.fftw.org/
https://computing.llnl.gov/projects/sundials
https://petsc.org
https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/projects/sundials
https://bout-dev.readthedocs.io/en/latest/user_docs/installing.html#cmake

Hermes-3 Documentation, Release 0.1.0

2.2 Building with PETSC

When building PETSc it is recommended to include hypre. The following PETSc configure line is a good starting
point:

./configure --with-mpi=yes --download-hypre --download-make --with-fortran-bindings=0 --
→˓with-debugging=0

To configure Hermes-3 with PETSc, use the -DBOUT_USE_PETSC=ON flag:

cmake . -B build -DBOUT_DOWNLOAD_SUNDIALS=ON -DBOUT_USE_PETSC=ON

If the PETSC_DIR and PETSC_ARCH environment variables have been set, then CMake should pick them up.

2.3 Numerical methods

Advection operators in Hermes-3 use slope limiters, also called flux limiters to suppress spurious numerical oscillations
near sharp features, while converging at 2nd-order in smooth regions. In general there is a trade-off between suppression
of numerical oscillations and dissipation: Too little dissipation results in oscillations that can cause problems (e.g.
negative densities), while too much dissipation smooths out real features and requires higher resolution to converge to
the same accuracy. The optimal choice of method is problem-dependent.

The CMake option HERMES_SLOPE_LIMITER sets the choice of slope limiter. The default method is MinMod, which has
been found to provide a good balance for problems of interest. If less dissipation is required then this can be changed
to MC (for Monotonized Central); For more dissipation (but 1st-order convergence) change it to Upwind.

4 Chapter 2. Getting started

https://en.wikipedia.org/wiki/Flux_limiter

CHAPTER

THREE

EXAMPLES

3.1 1D flux-tube

These simulations follow the dynamics of one or more species along the magnetic field. By putting a source at one end
of the domain, and a sheath at the other, this can be a useful model of plasma dynamics in the Scrape-Off Layer (SOL)
of a tokamak or other magnetised plasma.

3.1.1 1D periodic domain, Te and Ti

A fluid is evolved in 1D, imposing quasineutrality and zero net current. Both electron and ion pressures are evolved,
but there is no exchange of energy between them, or heat conduction.

Fig. 3.1: Evolution of pressure, starting from a top hat. Input in examples/1D-te-ti.

To run this example:

./hermes-3 -d examples/1D-te-ti

Which takes a few seconds to run on a single core. Then in the examples/1D-te-ti directory run the analysis script

python3 makeplot.py

5

Hermes-3 Documentation, Release 0.1.0

That should generate png files and an animated gif if ImageMagick is installed (the convert program). If an error
like ModuleNotFoundError: No module named 'boutdata' occurs, then install the boutdata package with
python3 -m pip install boutdata.

The model components are ions (i) and electrons (e), and a component which uses the force on the electrons to calculate
the parallel electric field, which transfers the force to the ions.

[hermes]
components = i, e, electron_force_balance

The ion density, pressure and momentum equations are evolved:

[i] # Ions
type = evolve_density, evolve_pressure, evolve_momentum

which solves the equations

𝜕𝑛𝑖
𝜕𝑡

= −∇ ·
(︀
𝑛𝑖b𝑣||𝑖

)︀
𝜕𝑝𝑖
𝜕𝑡

= −∇ ·
(︀
𝑝𝑖b𝑣||𝑖

)︀
− 2

3
𝑝𝑖∇ ·

(︀
b𝑣||𝑖

)︀
𝜕

𝜕𝑡

(︀
𝑛𝑖𝑣||𝑖

)︀
= −∇ ·

(︀
𝑛𝑖𝑣||𝑖b𝑣||𝑖

)︀
− 𝜕||𝑝𝑖 + 𝐸

The electron density is set to the ion density by quasineutrality, the parallel velocity is set by a zero current condition,
and only the electron pressure is evolved.

[e] # Electrons
type = quasineutral, zero_current, evolve_pressure

which adds the equations:

𝑛𝑒 =𝑛𝑖

𝜕𝑝𝑒
𝜕𝑡

= −∇ ·
(︀
𝑝𝑒b𝑣||𝑒

)︀
− 2

3
𝑝𝑒∇ ·

(︀
b𝑣||𝑒

)︀
The zero_current component sets:

𝐸 = − 𝜕||𝑝𝑒

𝑣||𝑒 =𝑣||𝑖

3.1.2 1D Scrape-off Layer (SOL)

This simulates a similar setup to the SD1D code: A 1D domain, with a source of heat and particles on one side, and a
sheath boundary on the other. Ions recycle into neutrals, which charge exchange and are ionised. A difference is that
separate ion and electron temperatures are evolved here.

Due to the short length-scales near the sheath, the grid is packed close to the target, by setting the grid spacing to be a
linear function of index:

[mesh]
dy = (length / ny) * (1 + (1-dymin)*(1-y/pi))

where dymin is 0.1 here, and sets the smallest grid spacing (at the target) as a fraction of the average grid spacing.

The components are ion species d+, atoms d, electrons e:

6 Chapter 3. Examples

https://github.com/boutproject/SD1D/

Hermes-3 Documentation, Release 0.1.0

Fig. 3.2: Evolution of ion and neutral density (blue); ion, electron and neutral temperature (red), starting from flat
profiles.

[hermes]
components = (d+, d, e,

zero_current, sheath_boundary, collisions, recycling, reactions,
neutral_parallel_diffusion)

The electron velocity is set to the ion by specifying zero_current; A sheath boundary is included; Collisions are needed
to be able to calculate heat conduction, as well as neutral diffusion rates; Recycling at the targets provides a source of
atoms; neutral_parallel_diffusion simulates cross-field diffusion in a 1D system.

The sheath boundary is only imposed on the upper Y boundary:

[sheath_boundary]

lower_y = false
upper_y = true

The reactions component is a group, which lists the reactions included:

[reactions]
type = (

d + e -> d+ + 2e, # Deuterium ionisation
d + d+ -> d+ + d, # Charge exchange
)

To run this example:

nice -n 10 ./hermes-3 -d examples/1D-recycling

This should take 5-10 minutes to run. There is a makeplots.py script in the examples/1D-recycling directory
which will generate plots and a gif animation (if ImageMagick is installed).

3.1. 1D flux-tube 7

https://imagemagick.org/index.php

Hermes-3 Documentation, Release 0.1.0

3.2 2D drift-plane

Simulations where the dynamics along the magnetic field is not included, or only included in a parameterised way as
sources or sinks. These are useful for the study of the basic physics of plasma “blobs” / filaments, and tokamak edge
turbulence.

3.2.1 Blob2d

A seeded plasma filament in 2D. This version is isothermal and cold ion, so only the electron density and vorticity are
evolved. A sheath-connected closure is used for the parallel current.

Fig. 3.3: Electron density Ne at three times, showing propagation to the right

The model components are

[hermes]
components = e, vorticity, sheath_closure

The electron component consists of two types:

[e] # Electrons
type = evolve_density, isothermal

The evolve_density component type evolves the electron density Ne. This component has several options, which are set
in the same section e.g.

poloidal_flows = false # Y flows due to ExB

and so solves the equation:

𝜕𝑛𝑒
𝜕𝑡

= −∇ · (𝑛𝑒v𝐸×𝐵) + ∇ · 1

𝑒
j𝑠ℎ

The isothermal component type sets the temperature to be a constant, and using the density then sets the pressure. The
constant temperature is also set in this [e] section:

temperature = 5 # Temperature in eV

so that the equation solved is

𝑝𝑒 =𝑒𝑛𝑒𝑇𝑒

where 𝑇𝑒 is the fixed electron temperature (5eV).

8 Chapter 3. Examples

Hermes-3 Documentation, Release 0.1.0

The vorticity component uses the pressure to calculate the diamagnetic current, so must come after the e component.
This component then calculates the potential. Options to control the vorticity component are set in the [vorticity]
section.

𝜕𝜔

𝜕𝑡
= −∇ · (𝜔v𝐸×𝐵) + ∇

(︂
𝑝𝑒∇× b

𝐵

)︂
+ ∇ · j𝑠ℎ

∇ ·
(︂

1

𝐵2
∇⊥𝜑

)︂
= 𝜔

The sheath_closure component uses the potential, so must come after vorticity. Options are also set as

[sheath_closure]
connection_length = 10 # meters

This adds the equation

∇ · j𝑠ℎ =
𝑛𝑒𝜑

𝐿||

where 𝐿|| is the connection length.

3.2.2 Blob2D-Te-Ti

A seeded plasma filament in 2D. This version evolves both electron and ion temperatures. A sheath-connected closure
is used for the parallel current.

Fig. 3.4: Electron density Ne at three times, showing propagation to the right and downwards

The model components are

[hermes]
components = e, h+, vorticity, sheath_closure

The electron component evolves density (saved as Ne) and pressure (Pe), and from these the temperature is calculated.

[e]
type = evolve_density, evolve_pressure

The ion component sets the ion density from the electron density, by using the quasineutrality of the plasma; the ion
pressure (Ph+) is evolved.

[h+]
type = quasineutral, evolve_pressure

3.2. 2D drift-plane 9

Hermes-3 Documentation, Release 0.1.0

The equations this solves are similar to the previous Blob2d case, except now there are pressure equations for both ions
and electrons:

𝜕𝑛𝑒
𝜕𝑡

= −∇ · (𝑛𝑒v𝐸×𝐵) + ∇ · 1

𝑒
j𝑠ℎ

𝜕𝑝𝑒
𝜕𝑡

= −∇ · (𝑝𝑒v𝐸×𝐵) − 𝛾𝑒𝑝𝑒𝑐𝑠

𝑛ℎ+ =𝑛𝑒

𝜕𝑝ℎ+
𝜕𝑡

= −∇ · (𝑝ℎ+v𝐸×𝐵)

𝜕𝜔

𝜕𝑡
= −∇ · (𝜔v𝐸×𝐵) + ∇

[︂
(𝑝𝑒 + 𝑝ℎ+)∇× b

𝐵

]︂
+ ∇ · j𝑠ℎ

∇ ·
[︂

1

𝐵2
∇⊥ (𝜑+ 𝑝ℎ+)

]︂
=𝜔

∇ · j𝑠ℎ =
𝑛𝑒𝜑

𝐿||

3.2.3 2D-drift-plane-turbulence-te-ti

A 2D turbulence simulation, similar to the Blob2D-Te-Ti case, but with extra source and sink terms, so that a statistical
steady state of source-driven turbulence can be reached.

The model components are

[hermes]
components = e, h+, vorticity, sheath_closure

The electron component evolves density (saved as Ne) and pressure (Pe), and from these the temperature is calculated.

[e]
type = evolve_density, evolve_pressure

The ion component sets the ion density from the electron density, by using the quasineutrality of the plasma; the ion
pressure (Ph+) is evolved.

[h+]
type = quasineutral, evolve_pressure

The sheath closure now specifies that additional sink terms should be added

[sheath_closure]
connection_length = 50 # meters
potential_offset = 0.0 # Potential at which sheath current is zero
sinks = true

and radially localised sources are added in the [Ne], [Pe], and [Ph+] sections.

The equations this solves are the same as the previous Blob2D-Te-Ti case, except wih extra source and sink terms. In

10 Chapter 3. Examples

Hermes-3 Documentation, Release 0.1.0

SI units (except temperatures in eV) the equations are:

𝑝total =
∑︁
𝑎

𝑒𝑛𝑎𝑇𝑎

𝜌total =
∑︁
𝑎

𝐴𝑎𝑚𝑝𝑛𝑎

𝑐𝑠 =

√︂
𝑝total
𝜌total

𝜕𝑛𝑒
𝜕𝑡

= −∇ · (𝑛𝑒v𝐸×𝐵) + ∇ · 1

𝑒
j𝑠ℎ − 𝑛𝑒𝑐𝑠

𝐿||
+ 𝑆𝑛

𝜕𝑝𝑒
𝜕𝑡

= −∇ · (𝑝𝑒v𝐸×𝐵) − 𝛾𝑒𝑝𝑒𝑐𝑠
𝐿||

+ 𝑆𝑝𝑒

𝑛ℎ+ =𝑛𝑒

𝜕𝑝ℎ+
𝜕𝑡

= −∇ · (𝑝ℎ+v𝐸×𝐵) − 𝛾𝑖𝑝ℎ+𝑐𝑠
𝐿||

+ 𝑆𝑝ℎ+

𝜕𝜔

𝜕𝑡
= −∇ · (𝜔v𝐸×𝐵) + ∇ ·

[︂
(𝑝𝑒 + 𝑝ℎ+)∇× b

𝐵

]︂
+ ∇ · j𝑠ℎ

∇ ·
[︂
𝐴𝑚𝑝

𝐵2
(𝑛∇⊥𝜑+ ∇⊥𝑝ℎ+)

]︂
=𝜔

∇ · j𝑠ℎ =
𝑒𝑛𝑒𝑐𝑠𝜑

𝑇𝐿||

v𝐸×𝐵 =
B×∇𝜑
𝐵2

Where 𝑇 and 𝑛 are the reference temperature (units of eV) and density (in units of 𝑚−3) used for normalisation.
𝑐𝑠 =

√︁
𝑒𝑇/𝑚𝑝 is the reference sound speed, where 𝑚𝑝 is the proton mass. The mean ion atomic mass 𝐴 is set to 1

here.

These reference values enter into the sheath current j𝑠ℎ because that is a simplified, linearised form of the full expres-
sion. Likewise the vorticity (𝜔) equation used the Boussinesq approximation to simplify the polarisation current term,
leading to constant reference values being used.

The sheath heat transmission coefficients default to 𝛾𝑒 = 6.5 and 𝛾𝑖 = 2.0 (𝛾𝑖 as suggested in Stangeby’s textbook
between equations (2.92) and (2.93)). Note the sinks in may not be correct or the best choices, especially for cases with
multiple ion species; they were chosen as being simple to implement by John Omotani in May 2022.

3.3 2D axisymmetric tokamak

These are transport simulations, where the cross-field transport is given by diffusion, and fluid-like equations are used
for the parallel dynamics (as in the 1D flux tube cases).

The input settings (in BOUT.inp) are set to read the grid from a file tokamak.nc. This is linked to a default file
compass-36x48.grd.nc, a COMPASS-like lower single null tokamak equilibrium. Due to the way that BOUT++ uses
communications between processors to implement branch cuts, these simulations require a multiple of 6 processors.
You don’t usually need 6 physical cores to run these cases, if MPI over-subscription is enabled.

3.3. 2D axisymmetric tokamak 11

Hermes-3 Documentation, Release 0.1.0

3.3.1 heat-transport

In examples/tokamak/heat-transport, this evolves only electron pressure with a fixed density. It combines cross-
field diffusion with parallel heat conduction and a sheath boundary condition.

To run this simulation with the default inputs requires (at least) 6 processors because it is a single-null tokamak grid.
From the build directory:

cd examples/tokamak
mpirun -np 6 ../../hermes-3 -d heat-transport

That will read the grid from tokamak.nc, which by default links to the compass-36x48.grd.nc file.

The components of the model are given in heat-transport/BOUT.inp:

[hermes]
components = e, h+, collisions, sheath_boundary_simple

We have two species, electrons and hydrogen ions, and add collisions between them and a simple sheath boundary
condition.

The electrons have the following components to fix the density, evolve the pressure, and include anomalous cross-field
diffusion:

[e]
type = fixed_density, evolve_pressure, anomalous_diffusion

The fixed_density takes these options:

AA = 1/1836
charge = -1
density = 1e18 # Fixed density [m^-3]

so in this simulation the electron density is a uniform and constant value. If desired, that density can be made a function
of space (x and y coordinates).

The evolve_pressure component has thermal conduction enabled, and outputs extra diagnostics i.e. the temperature
Te:

thermal_conduction = true # Spitzer parallel heat conduction
diagnose = true # Output additional diagnostics

There are other options that can be set to modify the behavior, such as setting kappa_limit_alpha to a value between
0 and 1 to impose a free-streaming heat flux limit.

Since we’re evolving the electron pressure we should set initial and boundary conditions on Pe:

[Pe]
function = 1
bndry_core = dirichlet(1.0) # Core boundary high pressure
bndry_all = neumann

That sets the pressure initially uniform, to a normalised value of 1, and fixes the pressure at the core boundary. Other
boundaries are set to zero-gradient (neumann) so there is no cross-field diffusion of heat out of the outer (SOL or PF)
boundaries. Flow of heat through the sheath is governed by the sheath_boundary_simple top-level component.

The hydrogen ions need a density and temperature in order to calculate the collision frequencies. If the ion temperature
is fixed to be the same as the electron temperature then there is no transfer of energy between ions and electrons:

12 Chapter 3. Examples

Hermes-3 Documentation, Release 0.1.0

[h+]
type = quasineutral, set_temperature

The quasineutral component sets the ion density so that there is no net charge in each cell. In this case that means
the hydrogen ion density is set equal to the electron density. To perform this calculation the component requires that
the ion atomic mass and charge are specified:

AA = 1
charge = 1

The set_temperature component sets the ion temperature to the temperature of another species. The name of that
species is given by the temperature_from option:

temperature_from = e # Set Th+ = Te

The collisions component is described in the manual, and calculates both electron-electron and electron-ion colli-
sions. These can be disabled if desired, using individual options. There are also ion-ion, electron-neutral, ion-neutral
and neutral-neutral collisions that are not used here.

The sheath_boundary_simple component is a simplified Bohm-Chodura sheath boundary condition, that allows the
sheath heat transmission coefficient to be specified for electrons and (where relevant) for ions.

The equations solved by this example are:

3

2

𝜕𝑃𝑒

𝜕𝑡
=∇ ·

(︀
𝜅𝑒||bb · ∇𝑇𝑒

)︀
+ ∇ · (𝑛𝑒𝜒∇⊥𝑇𝑒)

𝜅𝑒|| =3.16𝑃𝑒𝜏𝑒/𝑚𝑒

𝜏𝑒 =1/ (𝜈𝑒𝑒 + 𝜈𝑒𝑖)

𝜈𝑒𝑒 =
2𝑒4𝑛𝑒 ln Λ𝑒𝑒

3𝜖20𝑚
2
𝑒 (4𝜋𝑒𝑇𝑒/𝑚𝑒)

3/2

ln Λ𝑒𝑒 =30.4 − 1

2
ln𝑛𝑒 +

5

4
ln𝑇𝑒 −

√︁
10−5 + (ln𝑇𝑒 − 2)

2
/16

𝜈𝑒𝑖 =
𝑒4𝑛𝑒 ln Λ𝑒𝑖 (1 +𝑚𝑒/𝑚𝑖)

3𝜖20𝑚
2
𝑒 (2𝜋𝑇𝑒(1/𝑚𝑒 + 1/𝑚𝑖))

3/2

ln Λ𝑒𝑖 =31 − 1

2
ln𝑛𝑒 + ln𝑇𝑒

The calculation of the Coulomb logarithms follows the NRL formulary, and the above expression is used for tempera-
tures above 10eV. See the collisions manual section for the expressions used in other regimes.

3.3.2 recycling-dthene

The recycling-dthene example includes cross-field diffusion, parallel flow and heat conduction, collisions between
species, sheath boundary conditions and recycling. It simulates the density, parallel flow and pressure of the electrons;
ion species D+, T+, He+, Ne+; and neutral species D, T, He, Ne.

The model components are a list of species, and then collective components which couple multiple species.

[hermes]
components = (d+, d, t+, t, he+, he, ne+, ne, e,

collisions, sheath_boundary, recycling, reactions)

Note that long lists like this can be split across multiple lines by using parentheses.

3.3. 2D axisymmetric tokamak 13

Hermes-3 Documentation, Release 0.1.0

Fig. 3.5: Electron pressure, parallel tritium flux, and neon atom density. Simulation evolves D, T, He, Ne and electron
species, including ions and neutral atoms.

Each ion species has a set of components, to evolve the density, momentum and pressure. Anomalous diffusion adds
diffusion of particles, momentum and energy. For example deuterium ions contain:

[d+]
type = evolve_density, evolve_momentum, evolve_pressure, anomalous_diffusion
AA = 2
charge = 1

Atomic reactions are specified as a list:

[reactions]
type = (

d + e -> d+ + 2e, # Deuterium ionisation
t + e -> t+ + 2e, # Tritium ionisation
he + e -> he+ + 2e, # Helium ionisation
he+ + e -> he, # Helium+ recombination
ne + e -> ne+ + 2e, # Neon ionisation
ne+ + e -> ne, # Neon+ recombination
)

14 Chapter 3. Examples

CHAPTER

FOUR

TESTS

The specification of the Toro tests used here is taken from Walker (2012), originally from Toro’s book Riemann Solvers
and Numerical Methods for Fluid Dynamics.

4.1 1D fluid (MMS)

tests/integrated/1D-fluid

This convergence test using the Method of Manufactured Solutions (MMS) solves fluid equations in the pressure form:

𝜕𝑛

𝜕𝑡
= −∇ ·

(︀
𝑛b𝑣||

)︀
𝜕𝑝

𝜕𝑡
= −∇ ·

(︀
𝑝b𝑣||

)︀
− 2

3
𝑝∇ ·

(︀
b𝑣||

)︀
𝜕

𝜕𝑡

(︀
𝑚𝑛𝑣||

)︀
= −∇ ·

(︀
𝑛𝑣||b𝑣||

)︀
− 𝜕||𝑝

15

https://doi.org/10.1371/journal.pone.0039999
https://link.springer.com/book/10.1007/b79761
https://link.springer.com/book/10.1007/b79761

Hermes-3 Documentation, Release 0.1.0

4.2 Sod shock

tests/integrated/sod-shock and tests/integrated/sod-shock-energy

Euler equations in 1D. Starting from a state with a jump at the middle of the domain. Left state density, velocity and
pressure are (𝜌𝐿, 𝑢𝐿, 𝑝𝐿) = (1.0, 0, 1.0) Right state (𝜌𝑅, 𝑢𝑅, 𝑝𝑅) = (0.125, 0, 0.1). The result is shown in figure
below at time 𝑡 = 0.2 for different resolutions in a domain of length 1. The solid black line is the analytic solution.

When evolving pressure the position of the shock front lags the analytic solution, with the pressure behind the front
slightly too high. This is a known consequence of solving the Euler equations in non-conservative form. If instead we
evolve energy (internal + kinetic) then the result is much closer to the analytic solution.

16 Chapter 4. Tests

Hermes-3 Documentation, Release 0.1.0

4.3 Toro test 1

tests/integrated/toro-1

Toro’s test problem #1, from Riemann Solvers and Numerical Methods for Fluid Dynamics is a variation of Sod’s
shock tube problem. The left state is moving into the right, increasing the speed of the resulting shock. Left state
(𝜌𝐿, 𝑢𝐿, 𝑝𝐿) = (1.0, 0.75, 1.0) Right state (𝜌𝑅, 𝑢𝑅, 𝑝𝑅) = (0.125, 0, 0.1). The size of the domain is 5, and the
reference result is given at time 𝑡 = 0.8.

4.4 Toro test 2

tests/integrated/toro-2 and tests/integrated/toro-2-energy

Toro’s test problem #2 tests robustness to diverging flows and near-zero densities. The initial state has constant den-
sity and temperature, but a jump in velocity. Left state (𝜌𝐿, 𝑢𝐿, 𝑝𝐿) = (1.0,−2.0, 0.4) Right state (𝜌𝑅, 𝑢𝑅, 𝑝𝑅) =
(1.0, 2.0, 0.4). The result in a domain of length 5 at time 𝑡 = 0.6 is shown below.

4.5 Toro test 3

tests/integrated/toro-3 and tests/integrated/toro-3-energy

Toro’s test problem #3 contains a strong shock close to a contact discontinuity. Left initial state (𝜌𝐿, 𝑢𝐿, 𝑝𝐿) =
(1.0, 0, 1000.0) Right state (𝜌𝑅, 𝑢𝑅, 𝑝𝑅) = (1.0, 0, 0.01). Time 𝑡 = 0.04.

When evolving pressure, the simulation is robust but the density peak does not converge to the analytic solution (solid
black line):

However by evolving energy the result converges towards the analytic solution:

4.3. Toro test 1 17

https://link.springer.com/book/10.1007/b79761

Hermes-3 Documentation, Release 0.1.0

18 Chapter 4. Tests

Hermes-3 Documentation, Release 0.1.0

4.6 Toro test 4

tests/integrated/toro-4 and tests/integrated/toro-4-energy

Toro’s test problem #4 produces two right-going shocks with a contact between them. Left state (𝜌𝐿, 𝑢𝐿, 𝑝𝐿) =
(5.99924, 19.5975, 460.894) Right state (𝜌𝑅, 𝑢𝑅, 𝑝𝑅) = (5.99242,−6.19633, 46.0950). Result at time 𝑡 = 0.15.

4.7 Toro test 5

tests/integrated/toro-5 and tests/integrated/toro-5-energy

The initial conditions for Toro’s test problem #5 are the same as test #3, but the whole system is moving to the left at
a uniform speed. The velocity is chosen so that the contact discontinuity remains almost stationary at the initial jump
location. Left state (𝜌𝐿, 𝑢𝐿, 𝑝𝐿) = (1,−19.59745, 1000.0) Right state (𝜌𝑅, 𝑢𝑅, 𝑝𝑅) = (1,−19.59745, 0.01). Result
at time 𝑡 = 0.03.

4.6. Toro test 4 19

Hermes-3 Documentation, Release 0.1.0

20 Chapter 4. Tests

CHAPTER

FIVE

TOKAMAK AXISYMMETRIC TRANSPORT

Simulations of transport in axisymmetric tokamak geometries, with cross-field diffusion and interaction of plasma with
neutral gas.

5.1 Finding steady state solutions

These models can be run as a time-dependent problem, for example to study power transients, but the primary appli-
cation is to finding steady-state solutions.

5.1.1 Backward Euler solver

This solver uses PETSc to solve the nonlinear system of equations, with a Backward Euler timestep to improve the
condition number. There are many choices of algorithm and settings, so the following are guidelines and may not be
optimal for all cases.

[solver]
type = beuler # Backward Euler steady-state solver
snes_type = newtonls # Nonlinear solver
ksp_type = gmres # Linear solver
max_nonlinear_iterations = 10
pc_type = hypre # Preconditioner type
pc_hypre_type = euclid # Hypre preconditioner type
lag_jacobian = 500 # Iterations between jacobian recalculations
atol = 1e-7 # Absolute tolerance
rtol = 1e-5 # Relative tolerance

PETSc can print quite extensive performance diagnostics. These can be enabled by putting in the BOUT.inp options
file:

[petsc]
log_view = true

This section can also be used to set other PETSc flags, just omitting the leading - from the PETSc option.

21

Hermes-3 Documentation, Release 0.1.0

5.1.2 cvode solver

CVODE is primarily intended for high-accuracy time integration, rather than finding steady-state solutions, but can be
effective and quite robust. It tends to struggle at high order, so here we limit it to a maximum of 3rd order:

[solver]
type = cvode
use_precon = true # Use the user-provided preconditioner
mxstep = 1e5
mxorder = 3 # Limit to 3rd order
atol = 1e-12
rtol = 1e-5

Here use_precon = true tells the solver to use the Hermes-3 preconditioners, which are implemented in some com-
ponents. This includes preconditioning of parallel heat conduction, and of cross-field diffusion of neutrals.

5.1.3 Mesh interpolation

A useful strategy is to start with a low resolution grid, run until close to steady-state, then interpolate the solution onto
a finer mesh and restart. This process can be repeated as a kind of simplified multigrid method.

5.2 Post-processing

22 Chapter 5. Tokamak axisymmetric transport

CHAPTER

SIX

CODE STRUCTURE

A hermes-3 model, like all BOUT++ models, is an implementation of a set of Ordinary Differential Equations (ODEs).
The time integration solver drives the simulation, calling the Hermes::rhs function to calculate the time-derivatives
of all the evolving variables.

The calculation of the time derivatives is coordinated by passing a state object between components. The state is a
nested tree, and can have values inserted and retrieved by the components. The components are created and then run
by a scheduler, based on settings in the input (BOUT.inp) file.

In terms of design patterns, the method used here is essentially a combination of the Encapsulate Context and Command
patterns.

6.1 Simulation state

The simulation state is passed between components, and is a tree of objects (Options objects). At the start of each
iteration (rhs call) a new state is created and contains:

• time BoutReal, the current simulation time

• units

– secondsMultiply by this to get units of seconds

– eV Temperature normalisation

– TeslaMagnetic field normalisation

– meters Length normalisation

– inv_meters_cubed Density normalisation

so the temperature normalisation can be extracted using:

BoutReal Tnorm = state["units"]["eV"];

As the components of a model are run, they set, modify and use values stored in this state. To ensure that components
use consistent names for their input and output variables, a set of conventions are used for new variables which are
added to the state:

• species Plasma species

– e Electron species

– species1 Example “h”, “he+2”

∗ AA Atomic mass, proton = 1

∗ charge Charge, in units of proton charge (i.e. electron=-1)

23

https://bout-dev.readthedocs.io/en/latest/user_docs/physics_models.htmlject.github.io/
https://accu.org/journals/overload/12/63/kelly_246/
https://en.wikipedia.org/wiki/Command_pattern

Hermes-3 Documentation, Release 0.1.0

∗ density

∗ momentum

∗ pressure

∗ velocity Parallel velocity

∗ temperature

∗ collision_frequency Normalised collision frequency

∗ density_source Normalised particle source

∗ momentum_source Normalised momentum source

∗ energy_source Normalised energy source

• fields

– vorticity

– phi Electrostatic potential

– DivJdia Divergence of diamagnetic current

– DivJcol Divergence of collisional current

– DivJextra Divergence of current, including 2D parallel current closures. Not including diamagnetic,
parallel current due to flows, or polarisation currents

For example to get the electron density:

Field3D ne = state["species"]["e"]["density"];

This way of extracting values from the state will print the value to the log file, and is intended mainly for initialisation.
In Component::transform() and Component::finally() functions which run frequently, faster access methods
are used which don’t print to the log. To get a value:

Field3D ne = get<Field3D>(state["species"]["e"]["density"]);

If the value isn’t set, or can’t be converted to the given type, then a BoutException will be thrown.

To set a value in the state, there is the set() function:

set(state["species"]["h"]["density"], ne);

A common need is to add or subtract values from fields, such as density sources:

add(state["species"]["h"]["density_source"], recombination_rate);
subtract(state["species"]["h+"]["density_source"], recombination_rate);

Notes:

• When checking if a subsection exists, use option.isSection, since option.isSet is false if it is a section
and not a value.

• The species name convention is that the charge state is last, after the + or - sign: n2+ is a singly charged nitrogen
molecule, while n+2 is a +2 charged nitrogen atom.

24 Chapter 6. Code structure

Hermes-3 Documentation, Release 0.1.0

6.2 Components

The basic building block of all Hermes-3 models is the Component. This defines an interface to a class which takes
a state (a tree of dictionaries/maps), and transforms (modifies) it. After all components have modified the state in
turn, all components may then implement a finally method to take the final state but not modify it. This allows two
components to depend on each other, but makes debugging and testing easier by limiting the places where the state can
be modified.

struct Component
Interface for a component of a simulation model

The constructor of derived types should have signature (std::string name, Options &options, Solver *solver)

Subclassed by AmjuelReaction, AnomalousDiffusion, Collisions, DiamagneticDrift, Electromagnetic, Elec-
tronForceBalance, ElectronViscosity, EvolveDensity, EvolveEnergy, EvolveMomentum, EvolvePressure, Fixed-
Density, FixedFractionIons, FixedFractionRadiation< CoolingCurve >, FixedTemperature, FixedVelocity, Hy-
drogenChargeExchange, Ionisation, IonViscosity, Isothermal, NeutralBoundary, NeutralFullVelocity, Neu-
tralMixed, NeutralParallelDiffusion, NoFlowBoundary, OpenADAS, OpenADASChargeExchange, Polarisa-
tionDrift, Quasineutral, Recycling, RelaxPotential, ScaleTimeDerivs, SetTemperature, SheathBoundary, Sheath-
BoundaryInsulating, SheathBoundarySimple, SheathClosure, SimpleConduction, SNBConduction, SOLKITHy-
drogenChargeExchange, SOLKITNeutralParallelDiffusion, SoundSpeed, ThermalForce, Transform, Upstream-
DensityFeedback, Vorticity, ZeroCurrent

Public Functions

virtual void transform(Options &state) = 0
Modify the given simulation state All components must implement this function

inline virtual void finally(const Options &state)
Use the final simulation state to update internal state (e.g. time derivatives)

inline virtual void outputVars(Options &state)
Add extra fields for output, or set attributes e.g docstrings.

inline virtual void restartVars(Options &state)
Add extra fields to restart files.

inline virtual void precon(const Options &state, BoutReal gamma)
Preconditioning.

Public Static Functions

static std::unique_ptr<Component> create(const std::string &type, const std::string &name, Options
&options, Solver *solver)

Create a Component

Parameters

• type – The name of the component type to create (e.g. “evolve_density”)

• name – The species/name for this instance.

• options – Component settings: options[name] are specific to this component

• solver – Time-integration solver

6.2. Components 25

Hermes-3 Documentation, Release 0.1.0

Components are usually defined in separate files; sometimes multiple components in one file if they are small and related
to each other (e.g. atomic rates for the same species). To be able to create components, they need to be registered in
the factory. This is done in the header file using a code like:

#include "component.hxx"

struct MyComponent : public Component {
MyComponent(const std::string &name, Options &options, Solver *solver);
...

};

namespace {
RegisterComponent<MyComponent> registercomponentmine("mycomponent");
}

where MyComponent is the component class, and “mycomponent” is the name that can be used in the BOUT.inp settings
file to create a component of this type. Note that the name can be any string except it can’t contain commas or brackets
(), and shouldn’t start or end with whitespace.

Inputs to the component constructors are:

• name

• alloptions

• solver

The name is a string labelling the instance. The alloptions tree contains at least:

• alloptions[name] options for this instance

• alloptions['units']

6.3 Component scheduler

The simulation model is created in Hermes::init by a call to the ComponentScheduler:

scheduler = ComponentScheduler::create(options, Options::root(), solver);

and then in Hermes::rhs the components are run by a call:

scheduler->transform(state);

The call to ComponentScheduler::create() treats the “components” option as a comma-separated list of names.
The order of the components is the order that they are run in. For each name in the list, the scheduler looks up the
options under the section of that name.

[hermes]
components = component1, component2

[component1]

options to control component1

[component2]
(continues on next page)

26 Chapter 6. Code structure

Hermes-3 Documentation, Release 0.1.0

(continued from previous page)

options to control component2

This would create two Component objects, of type component1 and component2. Each time Hermes::rhs is run,
the transform functions of component1 amd then component2 will be called, followed by their finally functions.

It is often useful to group components together, for example to define the governing equations for different species. A
type setting in the option section overrides the name of the section, and can be another list of components

[hermes]
components = group1, component3

[group1]
type = component1, component2

options to control component1 and component2

[component3]

options to control component3

This will create three components, which will be run in the order component1, component2, component3: First all
the components in group1, and then component3.

class ComponentScheduler
Creates and schedules model components

Currently only one implementation, but in future alternative scheduler types could be created. There is therefore
a static create function which in future could switch between types.

Public Functions

void transform(Options &state)
Run the scheduler, modifying the state. This calls all components’ transform() methods, then all compo-
nent’s finally() methods.

void outputVars(Options &state)
Add metadata, extra outputs. This would typically be called only for writing to disk, rather than every
internal timestep.

void restartVars(Options &state)
Add variables to restart files.

void precon(const Options &state, BoutReal gamma)
Preconditioning.

6.3. Component scheduler 27

Hermes-3 Documentation, Release 0.1.0

Public Static Functions

static std::unique_ptr<ComponentScheduler> create(Options &scheduler_options, Options
&component_options, Solver *solver)

Inputs

Parameters

• scheduler_options – Configuration of the scheduler Should contain “components”, a
comma-separated list of component names

• component_options – Configuration of the components.

– <name>

∗ type = Component classes, . . . If not provided, the type is the same as the name
Multiple classes can be given, separated by commas. All classes will use the same
Options section.

∗ . . . Options to control the component(s)

• solver – Used for time-dependent components to evolve quantities

28 Chapter 6. Code structure

CHAPTER

SEVEN

COMPONENTS

This section describes the model components currently available.

7.1 Species density

The density of a species can be calculated in several different ways, and are usually needed by other components.

7.1.1 fixed_density

Set the density to a value which does not change in time. For example:

[d]
type = fixed_density, ...

AA = 2 # Atomic mass
charge = 0
density = 1e17 # In m^-3

Note that the density can be a function of x, y and z coordinates for spatial variation.

The implementation is in the FixedDensity class:

struct FixedDensity : public Component
Set ion density to a fixed value

Public Functions

inline FixedDensity(std::string name, Options &alloptions, Solver *solver)
Inputs

• <name>

– AA

– charge

– density value (expression) in units of m^-3

29

Hermes-3 Documentation, Release 0.1.0

inline virtual void transform(Options &state) override
Sets in the state the density, mass and charge of the species

• species

– <name>

∗ AA

∗ charge

∗ density

inline virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

7.1.2 evolve_density

This component evolves the species density in time, using the BOUT++ time integration solver. The species charge
and atomic mass must be set, and the initial density should be specified in its own section:

[d]
type = evolve_density, ...

AA = 2 # Atomic mass
charge = 0

[Nd]
function = 1 - 0.5x # Initial condition, normalised to Nnorm

The implementation is in the EvolveDensity class:

struct EvolveDensity : public Component
Evolve species density in time

Mesh inputs

N<name>_src A source of particles, per cubic meter per second. This can be over-ridden by the source option
setting.

Public Functions

EvolveDensity(std::string name, Options &options, Solver *solver)
Inputs

• <name>

– charge Particle charge e.g. hydrogen = 1

– AA Atomic mass number e.g. hydrogen = 1

– bndry_flux Allow flow through radial boundaries? Default is true.

– poloidal_flows Include poloidal ExB flows? Default is true.

30 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

– density_floor Minimum density floor. Default is 1e-5 normalised units

– low_n_diffuse Enhance parallel diffusion at low density? Default false

– hyper_z Hyper-diffusion in Z. Default off.

– evolve_log Evolve logarithm of density? Default false.

– diagnose Output additional diagnostics?

• N<name> e.g. “Ne”, “Nd+”

– source Source of particles [/m^3/s] NOTE: This overrides mesh input N<name>_src

– source_only_in_core Zero the source outside the closed field-line region?

– neumann_boundary_average_z Apply Neumann boundaries with Z average?

virtual void transform(Options &state) override
This sets in the state

• species

– <name>

∗ AA

∗ charge

∗ density

virtual void finally(const Options &state) override
Calculate ddt(N).

Requires state components

• species

– <name>

∗ density

Optional components

• species

– <name>

∗ velocity If included, requires sound_speed or temperature

∗ density_source

• fields

– phi If included, ExB drift is calculated

virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

7.1. Species density 31

Hermes-3 Documentation, Release 0.1.0

7.1.3 upstream_density_feedback

This is intended for 1D simulations, where the density at 𝑦 = 0 is set by adjusting an input source. This component uses
a PI controller method to scale the density source up and down, to maintain the specified upstream density. The source,
e.g. Sd+_feedback, is calculated as a product of the control signal density_source_multiplier, and the array
density_source_shape which defines the source region. The signal is non-dimensional and the controller depends
on the value of density_source_shape to have a good initial guess of the source. It should be set to a reasonable
value in the units of [m-3s-1]. A good reasonable value is the expected steady state domain particle loss (for example
due to unrecycled ions at the target).

For example:

[d+]
type = ..., upstream_density_feedback

density_upstream = 1e19 # Density in m^-3
density_controller_p = 1e-2 # Feedback controller proportional (p) parameter
density_controller_i = 1e-3 # Feedback controller integral (i) parameter

[Nd+]
source_shape = h(pi - y) * 1e20 # Source shape

There are two additional settings which can make the controller more robust without excessive tuning:

density_source_positive ensures the controller never takes particles away, which can prevent oscillatory be-
haviour. Note that this requires some other domain particle sink to ensure control, or else the particle count can never
reduce.

density_integral_positive This makes sure the integral component only adds particles. The integral component
takes a long time to change value, which can result in large overshoots if the initial guess was too small. This setting
mitigates this by disabling the integral term if the density is above the desired value.

Notes:

• The example cases have their PI parameters tuned properly without the need of the above two settings.

• Under certain conditions, the use of the PI controller can make the upstream density enter a very small
oscillation (~0.05% of upstream value).

• There is a separate source setting that includes a fixed (non varying) density source.

The implementation is in the UpstreamDensityFeedback class:

struct UpstreamDensityFeedback : public Component
Adds a time-varying density source, depending on the difference between the upstream density at y=0 and the
specified value

Public Functions

inline UpstreamDensityFeedback(std::string name, Options &alloptions, Solver*)
Inputs

• <name> (e.g. “d+”)

– density_upstream Upstream density (y=0) in m^-3

– density_controller_p Feedback proportional to error

– density_controller_i Feedback proportional to error integral

32 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

– density_integral_positive Force integral term to be positive? (default: false)

– density_source_positive Force density source to be positive? (default: true)

– diagnose Output diagnostic information?

• N<name> (e.g. “Nd+”)

– source_shape The initial source that is scaled by a time-varying factor

virtual void transform(Options &state) override
Inputs

• <name>

– density

Outputs

• <name>

– density_source

inline virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

inline virtual void restartVars(Options &state) override
Add extra fields to restart files.

7.1.4 fixed_fraction_ions

This sets the density of a species to a fraction of the electron density.

7.1.5 quasineutral

This component sets the density of one species, so that the overall charge density is zero everywhere. This must therefore
be done after all other charged species densities have been calculated. It only makes sense to use this component for
species with a non-zero charge.

7.2 Species pressure and temperature

7.2.1 isothermal

Sets the temperature of a species to a fixed value which is constant in space and time. If the species density is set then
this component also calculates the pressure.

By default only saves the temperature once as a non-evolving variable. If diagnose is set then pressure is also saved
as a time-evolving variable.

[e]
type = ..., isothermal

temperature = 10 # Constant temperature [eV]

7.2. Species pressure and temperature 33

Hermes-3 Documentation, Release 0.1.0

struct Isothermal : public Component
Set temperature to a fixed value

Public Functions

virtual void transform(Options &state) override
Inputs

• species

– <name>

∗ density (optional)

Sets in the state

• species

– <name>

∗ temperature

∗ pressure (if density is set)

virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

7.2.2 fixed_temperature

Sets the temperature of a species to a fixed value which is constant in time but can vary in space. If the species density
is set then this component also calculates the pressure.

By default only saves the temperature once as a non-evolving variable. If diagnose is set then pressure is also saved
as a time-evolving variable.

[e]
type = ..., fixed_temperature

temperature = 10 - x # Spatially dependent temperature [eV]

struct FixedTemperature : public Component
Set species temperature to a fixed value

Public Functions

inline FixedTemperature(std::string name, Options &alloptions, Solver *solver)
Inputs

• <name>

– temperature value (expression) in units of eV

34 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

inline virtual void transform(Options &state) override
Sets in the state the temperature and pressure of the species

Inputs

• species

– <name>

∗ density (optional)

Sets in the state

• species

– <name>

∗ temperature

∗ pressure (if density is set)

inline virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

7.2.3 evolve_pressure

Evolves the pressure in time. This pressure is named P where <species> is the short name of the evolving species e.g.
Pe.

By default parallel thermal conduction is included, which requires a collision time. If collisions are not calculated,
then thermal conduction should be turned off by setting thermal_conduction = false in the input options.

If the component option diagnose = true then additional fields will be saved to the dump files: The species temper-
ature T + name (e.g. Td+ or Te), the time derivative ddt(P + name) (e.g. ddt(Pd+) or ddt(Pe)), and the source of
pressure from other components is saved as SP + name (e.g. SPd+ or SPe). The pressure source is the energy density
source multiplied by 2/3 (i.e. assumes a monatomic species).

𝜕𝑃

𝜕𝑡
= −∇ · (𝑃v) − 2

3
𝑃∇ · b𝑣|| +

2

3
∇ ·
(︀
𝜅||bb · ∇𝑇

)︀
+

2

3
𝑆𝐸 + 𝑆𝑁

1

2
𝑚𝑁𝑉 2

where 𝑆𝐸 is the energy_source (thermal energy source), and 𝑆𝑁 is the density source.

Notes:

• Heat conduction through the boundary is turned off currently. This is because heat losses are usually calculated
at the sheath, so any additional heat conduction would be in addition to the sheath heat transmission already
included.

The implementation is in EvolvePressure:

struct EvolvePressure : public Component
Evolves species pressure in time

Mesh inputs

P<name>_src A source of pressure, in Pascals per second This can be over-ridden by the source option setting.

7.2. Species pressure and temperature 35

Hermes-3 Documentation, Release 0.1.0

Public Functions

EvolvePressure(std::string name, Options &options, Solver *solver)
Inputs

• <name>

– bndry_flux Allow flows through radial boundaries? Default is true

– density_floor Minimum density floor. Default 1e-5 normalised units.

– diagnose Output additional diagnostic fields?

– evolve_log Evolve logarithm of pressure? Default is false

– hyper_z Hyper-diffusion in Z

– kappa_coefficient Heat conduction constant. Default is 3.16 for electrons, 3.9 otherwise

– kappa_limit_alpha Flux limiter, off by default.

– poloidal_flows Include poloidal ExB flows? Default is true

– precon Enable preconditioner? Note: solver may not use it even if enabled.

– p_div_v Use p * Div(v) form? Default is v * Grad(p) form

– thermal_conduction Include parallel heat conduction? Default is true

• P<name> e.g. “Pe”, “Pd+”

– source Source of pressure [Pa / s]. NOTE: This overrides mesh input P<name>_src

– source_only_in_core Zero the source outside the closed field-line region?

– neumann_boundary_average_z Apply Neumann boundaries with Z average?

virtual void transform(Options &state) override
Inputs

• species

– <name>

∗ density

Sets

• species

– <name>

∗ pressure

∗ temperature Requires density

virtual void finally(const Options &state) override
Optional inputs

• species

– <name>

∗ velocity. Must have sound_speed or temperature

36 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

∗ energy_source

∗ collision_rate (needed if thermal_conduction on)

• fields

– phi Electrostatic potential -> ExB drift

virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

virtual void precon(const Options &state, BoutReal gamma) override
Preconditioner

7.2.4 evolve_energy

Note This is currently under development and has some unresolved issues with boundary conditions. Only for testing
purposes.

This evolves the sum of species internal energy and parallel kinetic energy, ℰ :

ℰ =
1

𝛾 − 1
𝑃 +

1

2
𝑚𝑛𝑣2||

Note that this component requires the parallel velocity 𝑣|| to calculate the pressure. It must therefore be listed after a
component that sets the velocity, such as evolve_momentum:

[d]
type = ..., evolve_momentum, evolve_energy

The energy density will be saved as E (e.g Ed) and the pressure as P (e.g. Pd). Additional diagnostics, such as the
temperature, can be saved by setting the option diagnose = true.

struct EvolveEnergy : public Component
Evolves species internal energy in time

Mesh inputs

P<name>_src A source of pressure, in Pascals per second This can be over-ridden by the source option setting.

Public Functions

EvolveEnergy(std::string name, Options &options, Solver *solver)
Inputs

• <name>

– bndry_flux Allow flows through radial boundaries? Default is true

– density_floor Minimum density floor. Default 1e-5 normalised units.

– diagnose Output additional diagnostic fields?

– evolve_log Evolve logarithm of pressure? Default is false

– hyper_z Hyper-diffusion in Z

– kappa_coefficient Heat conduction constant. Default is 3.16 for electrons, 3.9 otherwise

7.2. Species pressure and temperature 37

Hermes-3 Documentation, Release 0.1.0

– kappa_limit_alpha Flux limiter, off by default.

– poloidal_flows Include poloidal ExB flows? Default is true

– precon Enable preconditioner? Note: solver may not use it even if enabled.

– thermal_conduction Include parallel heat conduction? Default is true

• E<name> e.g. “Ee”, “Ed+”

– source Source of energy [W / s]. NOTE: This overrides mesh input P<name>_src

– source_only_in_core Zero the source outside the closed field-line region?

– neumann_boundary_average_z Apply Neumann boundaries with Z average?

virtual void transform(Options &state) override
Inputs

• species

– <name>

∗ density

∗ velocity

Sets

• species

– <name>

∗ pressure

∗ temperature

virtual void finally(const Options &state) override
Optional inputs

• species

– <name>

∗ velocity. Must have sound_speed or temperature

∗ energy_source

∗ collision_rate (needed if thermal_conduction on)

• fields

– phi Electrostatic potential -> ExB drift

virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

virtual void precon(const Options &state, BoutReal gamma) override
Preconditioner

38 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

7.2.5 SNB nonlocal heat flux

Calculates the divergence of the electron heat flux using the Shurtz-Nicolai-Busquet (SNB) model. Uses the BOUT++
implementation which is documented here.

struct SNBConduction : public Component
Calculate electron heat flux using the Shurtz-Nicolai-Busquet (SNB) model

This component will only calculate divergence of heat flux for the electron (e) species.

Usage

Add as a top-level component after both electron temperature and collision times have been calculated.

Important: If evolving electron pressure, disable thermal conduction or that will continue to add Spitzer heat
conduction.

[hermes]
components = e, ..., collisions, snb_conduction

[e]
type = evolve_pressure, ...
thermal_conduction = false # For evolve_pressure

[snb_conduction]
diagnose = true # Saves heat flux diagnostics

Useful references:

• Braginskii equations by R.Fitzpatrick: http://farside.ph.utexas.edu/teaching/plasma/Plasmahtml/node35.
html

• J.P.Brodrick et al 2017: https://doi.org/10.1063/1.5001079 and https://arxiv.org/abs/1704.08963

• Shurtz, Nicolai and Busquet 2000: https://doi.org/10.1063/1.1289512

Public Functions

inline SNBConduction(std::string name, Options &alloptions, Solver*)
Inputs

• <name>

– diagnose Saves Div_Q_SH and Div_Q_SNB

virtual void transform(Options &state) override
Inputs

• species

– e

∗ density

∗ collision_frequency

Sets

• species

7.2. Species pressure and temperature 39

https://bout-dev.readthedocs.io/en/latest/user_docs/nonlocal.html?#snb-model
http://farside.ph.utexas.edu/teaching/plasma/Plasmahtml/node35.html
http://farside.ph.utexas.edu/teaching/plasma/Plasmahtml/node35.html
https://doi.org/10.1063/1.5001079
https://arxiv.org/abs/1704.08963
https://doi.org/10.1063/1.1289512

Hermes-3 Documentation, Release 0.1.0

– e

∗ energy_source

virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

7.3 Species parallel dynamics

7.3.1 fixed_velocity

Sets the velocity of a species to a fixed value which is constant in time but can vary in space. If the species density is
set then this component also calculates the momentum.

Saves the temperature once as a non-evolving variable.

[e]
type = ..., fixed_velocity

velocity = 10 + sin(z) # Spatially dependent velocity [m/s]

struct FixedVelocity : public Component
Set parallel velocity to a fixed value

Public Functions

inline virtual void transform(Options &state) override
This sets in the state

• species

– <name>

∗ velocity

∗ momentum

inline virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

7.3.2 evolve_momentum

Evolves the momentum NV in time. The evolving quantity includes the atomic mass number, so should be divided by
AA to obtain the particle flux.

If the component option diagnose = true then additional fields will be saved to the dump files: The velocity V
+ name (e.g. Vd+ or Ve), the time derivative ddt(NV + name) (e.g. ddt(NVd+) or ddt(NVe)), and the source of
momentum density (i.e force density) from other components is saved as SNV + name (e.g. SNVd+ or SNVe).

The implementation is in EvolveMomentum:

struct EvolveMomentum : public Component
Evolve parallel momentum.

40 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

Public Functions

virtual void transform(Options &state) override
This sets in the state

• species

– <name>

∗ momentum

∗ velocity if density is defined

virtual void finally(const Options &state) override
Calculate ddt(NV).

Inputs

• species

– <name>

∗ density

∗ velocity

∗ pressure (optional)

∗ momentum_source (optional)

∗ sound_speed (optional, used for numerical dissipation)

∗ temperature (only needed if sound_speed not provided)

• fields

– phi (optional)

virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

7.3.3 zero_current

This calculates the parallel flow of one charged species so that there is no net current, using flows already calculated
for other species. It is used like quasineutral:

[hermes]
components = h+, ..., e, ... # Note: e after all other species

[e]
type = ..., zero_current,... # Set e:velocity

charge = -1 # Species must have a charge

7.3. Species parallel dynamics 41

Hermes-3 Documentation, Release 0.1.0

7.3.4 electron_force_balance

This calculates a parallel electric field which balances the electron pressure gradient and other forces on the electrons
(including collisional friction, thermal forces):

𝐸|| = (−∇𝑝𝑒 + 𝐹) /𝑛𝑒

where 𝐹 is the momentum_source for the electrons. This electric field is then used to calculate a force on the other
species:

𝐹𝑧 = 𝑍𝑛𝑧𝐸||

which is added to the ion’s momentum_source.

The implementation is in ElectronForceBalance:

struct ElectronForceBalance : public Component
Balance the parallel electron pressure gradient against the electric field. Use this electric field to calculate a force
on the other species

E = (-?p_e + F) / n_e

where F is the momentum source for the electrons.

Then uses this electric field to calculate a force on all ion species.

Note: This needs to be put after collisions and other components which impose forces on electrons

Public Functions

virtual void transform(Options &state) override
Required inputs

• species

– e

∗ pressure

∗ density

∗ momentum_source [optional] Asserts that charge = -1

Sets in the input

• species

– <all except=”” e>=””> if both density and charge are set

∗ momentum_source

42 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

7.4 electron_viscosity

Calculates the Braginskii electron parallel viscosity, adding a force (momentum source) to the electron momentum
equation:

𝐹 =
√
𝐵∇ ·

[︁𝜂𝑒
𝐵
bb · ∇

(︁√
𝐵𝑉||𝑒

)︁]︁
The electron parallel viscosity is

𝜂𝑒 =
4

3
0.73𝑝𝑒𝜏𝑒

where 𝜏𝑒 is the electron collision time. The collisions between electrons and all other species therefore need to be
calculated before this component is run:

[hermes]
components = ..., e, ..., collisions, electron_viscosity

struct ElectronViscosity : public Component
Electron viscosity

Adds Braginskii parallel electron viscosity, with SOLPS-style viscosity flux limiter

Needs to be calculated after collisions, because collision frequency is used to calculate parallel viscosity

References

• https://farside.ph.utexas.edu/teaching/plasma/lectures1/node35.html

Public Functions

ElectronViscosity(std::string name, Options &alloptions, Solver*)
Braginskii electron viscosity.

Inputs

• <name>

– diagnose: bool, default false Output diagnostic SNVe_viscosity?

– eta_limit_alpha: float, default -1.0 Flux limiter coefficient. < 0 means no limiter

virtual void transform(Options &state) override
Inputs

• species

– e

∗ pressure (skips if not present)

∗ velocity (skips if not present)

∗ collision_frequency

Sets in the state

• species

– e

∗ momentum_source

7.4. electron_viscosity 43

https://farside.ph.utexas.edu/teaching/plasma/lectures1/node35.html

Hermes-3 Documentation, Release 0.1.0

virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

7.5 ion_viscosity

Adds ion viscosity terms to all charged species that are not electrons. The collision frequency is required so this is a
top-level component that must be calculated after collisions:

[hermes]
components = ..., collisions, ion_viscosity

By default only the parallel diffusion of momentum is included, adding a force to each ion’s momentum equation:

𝐹 =
√
𝐵∇ ·

[︁𝜂𝑖
𝐵
bb · ∇

(︁√
𝐵𝑉||𝑖

)︁]︁
The ion parallel viscosity is

𝜂𝑖 =
4

3
0.96𝑝𝑖𝜏𝑖

If the perpendicular option is set:

[ion_viscosity]
perpendicular = true # Include perpendicular flows

Then the ion scalar viscous pressure is calculated as:

Π𝑐𝑖 = Π𝑐𝑖|| + Π𝑐𝑖⊥

where Π𝑐𝑖|| corresponds to the parallel diffusion of momentum above.

Π𝑐𝑖|| = −0.96
2𝑝𝑖𝜏𝑖√
𝐵
𝜕||

(︁√
𝐵𝑉||𝑖

)︁
The perpendicular part is calculated from:

Π𝑐𝑖⊥ =0.96𝑝𝑖𝜏𝑖𝜅 ·
[︂
V𝐸 + V𝑑𝑖 + 1.16

b×∇𝑇𝑖
𝐵

]︂
= − 0.96𝑝𝑖𝜏𝑖

1

𝐵
(b× 𝜅) ·

[︂
∇𝜑+

∇𝑝𝑖
𝑒𝑛𝑖

+ 1.61∇𝑇𝑖
]︂

A parallel force term is added, in addition to the parallel viscosity above:

𝐹 = −2

3
𝐵3/2𝜕||

(︂
Π𝑐𝑖⊥

𝐵3/2

)︂
In the vorticity equation the viscosity appears as a divergence of a current:

J𝑐𝑖 =
Π𝑐𝑖

2
∇× b

𝐵
− 1

3

b×∇Π𝑐𝑖

𝐵

that transfers energy between ion internal energy and 𝐸 ×𝐵 energy:

𝜕𝜔

𝜕𝑡
= . . .+ ∇ · J𝑐𝑖

𝜕𝑝𝑖
𝜕𝑡

= . . .− J𝑐𝑖 · ∇
(︂
𝜑+

𝑝𝑖
𝑛0

)︂

44 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

Note that the sum of the perpendicular and parallel contributions to the ion viscosity act to damp the net poloidal flow.
This can be seen by assuming that 𝜑, 𝑝𝑖 and 𝑇𝑖 are flux functions. We can then write:

Π𝑐𝑖⊥ = −0.96𝑝𝑖𝜏𝑖
1

𝐵
(b× 𝜅) · ∇𝜓𝐹 (𝜓)

where

𝐹 (𝜓) =
𝜕𝜑

𝜕𝜓
+

1

𝑒𝑛

𝜕𝑝𝑖
𝜕𝜓

+ 1.61
𝜕𝑇𝑖
𝜕𝜓

Using the approximation

(b× 𝜅) · ∇𝜓 ≃ −𝑅𝐵𝜁𝜕|| ln𝐵

expanding:

2√
𝐵
𝜕||

(︁√
𝐵𝑉||𝑖

)︁
= 2𝜕||𝑉||𝑖 + 𝑉||𝑖𝜕|| ln𝐵

and neglecting parallel gradients of velocity gives:

Π𝑐𝑖 ≃ 0.96𝑝𝑖𝜏𝑖

[︂
𝑅𝐵𝜁

𝐵
𝐹 (𝜓) − 𝑉||𝑖

]︂
𝜕|| ln𝐵

Notes and implementation details: - The magnitude of Π𝑐𝑖⊥ and Π𝑐𝑖|| are individually

limited to be less than or equal to the scalar pressure 𝑃𝑖 (though can have opposite sign). The reasoning
is that if these off-diagonal terms become large then the model is likely breaking down. Occasionally
happens in low-density regions.

struct IonViscosity : public Component
Ion viscosity terms

Adds a viscosity to all species which are not electrons

Uses Braginskii collisional form, combined with a SOLPS-like flux limiter.

Needs to be calculated after collisions, because collision frequency is used to calculate parallel viscosity

The ion stress tensor Pi_ci is split into perpendicular and parallel pieces:

Pi_ci = Pi_ciperp + Pi_cipar

In the parallel ion momentum equation the Pi_cipar term is solved as a parallel diffusion, so is treated separately
All other terms are added to Pi_ciperp, even if they are not really parallel parts

Public Functions

IonViscosity(std::string name, Options &alloptions, Solver*)
Inputs

• <name>

– eta_limit_alpha: float, default -1 Flux limiter coefficient. < 0 means off.

– perpendicular: bool, default false Include perpendicular flows? Requires curvature vector and
phi potential

7.5. ion_viscosity 45

Hermes-3 Documentation, Release 0.1.0

virtual void transform(Options &state) override
Inputs

• species

– <name> (skips “e”)

∗ pressure (skips if not present)

∗ velocity (skips if not present)

∗ collision_frequency

Sets in the state

• species

– <name>

∗ momentum_source

virtual void outputVars(Options &state) override
Save variables to the output.

7.6 simple_conduction

This is a simplified parallel heat conduction model that can be used when a linearised model is needed. If used, the
thermal conduction term in evolve_pressure component should be disabled.

[hermes]
components = e, ...

[e]
type = evolve_pressure, simple_conduction

thermal_conduction = false # Disable term in evolve_pressure

To linearise the heat conduction the temperature and density used in calculating the Coulomb logarithm and heat
conduction coefficient can be fixed by specifying conduction_temperature and conduction_density.

Note: For hydrogenic plasmas this produces very similar parallel electron heat conduction as the evolve_pressure
term with electron-electron collisions disabled.

struct SimpleConduction : public Component
Simplified models of parallel heat conduction

Intended mainly for testing.

Expressions taken from: https://farside.ph.utexas.edu/teaching/plasma/lectures1/node35.html

46 Chapter 7. Components

https://farside.ph.utexas.edu/teaching/plasma/lectures1/node35.html

Hermes-3 Documentation, Release 0.1.0

Public Functions

inline virtual void transform(Options &state) override
Modify the given simulation state All components must implement this function

7.7 Drifts

The ExB drift is included in the density, momentum and pressure evolution equations if potential is calculated. Other
drifts can be added with the following components.

7.7.1 diamagnetic_drift

Adds diamagnetic drift terms to all species’ density, pressure and parallel momentum equations. Calculates the dia-
magnetic drift velocity as

v𝑑𝑖𝑎 =
𝑇

𝑞
∇×

(︂
b

𝐵

)︂
where the curvature vector ∇×

(︀
b
𝐵

)︀
is read from the bxcv mesh input variable.

struct DiamagneticDrift : public Component
Calculate diamagnetic flows.

Public Functions

virtual void transform(Options &state) override
For every species, if it has:

• temperature

• charge

Modifies:

• density_source

• energy_source

• momentum_source

7.7.2 polarisation_drift

This calculates the polarisation drift of all charged species, including ions and electrons. It works by approximating
the drift as a potential flow:

v𝑝𝑜𝑙 = − 𝑚

𝑞𝐵2
∇⊥𝜑𝑝𝑜𝑙

where 𝜑𝑝𝑜𝑙 is approximately the time derivative of the electrostatic potential 𝜑 in the frame of the fluid, with an ion
diamagnetic contribution. This is calculated by inverting a Laplacian equation similar to that solved in the vorticity
equation.

This component needs to be run after all other currents have been calculated. It marks currents as used, so out-of-order
modifications should raise errors.

7.7. Drifts 47

Hermes-3 Documentation, Release 0.1.0

See the examples/blob2d-vpol example, which contains:

[hermes]
components = e, vorticity, sheath_closure, polarisation_drift

[polarisation_drift]
diagnose = true

Setting diagnose = true saves DivJ to the dump files with the divergence of all currents except polarisation, and
phi_pol which is the polarisation flow potential.

struct PolarisationDrift : public Component
Calculates polarisation drift terms for all charged species, both ions and electrons.

Approximates the polarisation drift by a generalised flow potential phi_pol

v_pol = - (A / (Z * B^2)) * Grad_perp(phi_pol)

phi_pol is approximately the time derivative of the electric potential in the frame of the flow, plus an ion diamag-
netic contribution

phi_pol is calculated using:

Div(mass_density / B^2 * Grad_perp(phi_pol)) = Div(Jpar) + Div(Jdia) + . . .

Where the divergence of currents on the right is calculated from:

• species[. . .][“momentum”] The parallel momentum of charged species

• DivJdia, diamagnetic current, calculated in vorticity component

• DivJcol collisional current, calculated in vorticity component

• DivJextra Other currents, eg. 2D parallel closures

The mass_density quantity is the sum of density * atomic mass for all charged species (ions and electrons)

Public Functions

virtual void transform(Options &state) override
Inputs

• species

– . . . All species with both charge and mass

∗ AA

∗ charge

∗ density

∗ momentum (optional)

• fields

– DivJextra (optional)

– DivJdia (optional)

– DivJcol (optional)

48 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

Sets

• species

– . . . All species with both charge and mass

∗ density_source

∗ energy_source (if pressure set)

∗ momentum_source (if momentum set)

virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

7.8 Neutral gas models

The neutral_mixed component solves fluid equations along 𝑦 (parallel to the magnetic field), and uses diffusive
transport in 𝑥 and 𝑧. It was adopted from the approach used in UEDGE and this paper [Journal of Nuclear Materials,
vol. 313-316, pp. 559-563 (2003)].

𝜕𝑛𝑛
𝜕𝑡

= −∇ ·
(︀
𝑛𝑛b𝑣||𝑛 + 𝑛𝑛v⊥𝑛

)︀
+ 𝑆

𝜕

𝜕𝑡

(︀
𝑛𝑛𝑣||𝑛

)︀
= −∇ ·

(︀
𝑛𝑛𝑣||𝑛b𝑣||𝑛 + 𝑛𝑛𝑣||𝑛v⊥𝑛

)︀
− 𝜕||𝑝𝑛 + ∇||

(︀
𝐷𝑛𝑛𝑛𝑛𝜕||𝑣||𝑛

)︀
+ 𝐹

𝜕𝑝𝑛
𝜕𝑡

= −∇ ·
(︀
𝑝𝑛b𝑣||𝑛 + 𝑝𝑛v⊥𝑛

)︀
− 2

3
𝑝𝑛∇ ·

(︀
b𝑣||𝑛

)︀
+ ∇ · (𝐷𝑛𝑛𝑛𝑛∇⊥𝑇𝑛) +

2

3
𝑄

The parallel momentum is evolved, so that it can be exchanged with the plasma parallel momentum, but the mass is
neglected for perpendicular motion. In the perpendicular direction, therefore, the motion is a balance between the
friction (primarily with the plasma through charge exchange) and the pressure gradient:

v⊥𝑛 = −𝐷𝑛𝑛
1

𝑝𝑛
∇⊥𝑝𝑛

At the moment there is no attempt to limit these velocities, which has been found necessary in UEDGE to get physical
results in better agreement with kinetic neutral models [Discussion, T.Rognlien].

7.9 Boundary conditions

7.9.1 noflow_boundary

This is a species component which imposes a no-flow boundary condition on y (parallel) boundaries.

• Zero-gradient boundary conditions are applied to density, temperature and pressure fields, if they are set.

• Zero-value boundary conditions are applied to velocity and momentum if they are set.

By default both yup and ydown boundaries are set, but can be turned off by setting noflow_lower_y or
noflow_upper_y to false.

Example: To set no-flow boundary condition on an ion d+ at the lower y boundary, with a sheath boundary at the upper
y boundary:

7.8. Neutral gas models 49

Hermes-3 Documentation, Release 0.1.0

[hermes]
components = d+, sheath_boundary

[d+]
type = noflow_boundary

noflow_lower_y = true # This is the default
noflow_upper_y = false # Turn off no-flow at upper y for d+ species

[sheath_boundary]
lower_y = false # Turn off sheath lower boundary for all species
upper_y = true

Note that currently noflow_boundary is set per-species, whereas sheath_boundary is applied to all species. This
is because sheath boundary conditions couple all charged species together, and doesn’t affect neutral species.

The implementation is in NoFlowBoundary:

struct NoFlowBoundary : public Component

Public Functions

virtual void transform(Options &state) override
Inputs

• species

– <name>

∗ density [Optional]

∗ temperature [Optional]

∗ pressure [Optional]

∗ velocity [Optional]

∗ momentum [Optional]

7.9.2 neutral_boundary

Sets Y (sheath/target) boundary conditions on neutral particle density, temperature and pressure. A no-flow boundary
condition is set on parallel velocity and momentum. It is a species-specific component and so goes in the list of
components for the species that the boundary condition should be applied to.

An energy sink is added to the flux of heat to the wall, with heat flux q:

𝑞 = 𝛾ℎ𝑒𝑎𝑡𝑛𝑇𝑣𝑡ℎ

𝑣𝑡ℎ =
√︀
𝑒𝑇/𝑚

The factor gamma_heat

[hermes]
components = d

(continues on next page)

50 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

(continued from previous page)

[d]
type = ... , neutral_boundary

gamma_heat = 3 # Neutral boundary heat transmission coefficient
neutral_lower_y = true # Boundary on lower y?
neutral_upper_y = true # Boundary on upper y?

struct NeutralBoundary : public Component
Per-species boundary condition for neutral particles at sheath (Y) boundaries.

Sets boundary conditions:

• Free boundary conditions on logarithm of density, temperature and pressure

• No-flow boundary conditions on velocity and momentum.

Adds an energy sink corresponding to a flux of heat to the walls.

Heat flux into the wall is q = gamma_heat * n * T * v_th

where v_th = sqrt(eT/m) is the thermal speed

Public Functions

virtual void transform(Options &state) override
state

• species

– <name>

∗ density Free boundary

∗ temperature Free boundary

∗ pressure Free boundary

∗ velocity [if set] Zero boundary

∗ momentum [if set] Zero boundary

∗ energy_source Adds wall losses

7.10 Collective quantities

These components combine multiple species together. They are typically listed after all the species groups in the
component list, so that all the species are present in the state.

One of the most important is the collisions component. This sets collision times for all species, which are then used

7.10. Collective quantities 51

Hermes-3 Documentation, Release 0.1.0

7.10.1 sound_speed

Calculates the collective sound speed, by summing the pressure of all species, and dividing by the sum of the mass
density of all species:

𝑐𝑠 =

√︃∑︁
𝑖

𝑃𝑖/
∑︁
𝑖

𝑚𝑖𝑛𝑖

This is set in the state as sound_speed, and is used for the numerical diffusion terms in the parallel advection.

7.10.2 neutral_parallel_diffusion

This adds diffusion to all neutral species (those with no or zero charge), because it needs to be calculated after the
collision frequencies are known.

[hermes]
components = ... , collisions, neutral_parallel_diffusion

[neutral_parallel_diffusion]
dneut = 1 # Diffusion multiplication factor
diagnose = true # This enables diagnostic output for each species

It is intended mainly for 1D simulations, to provide effective parallel diffusion of particles, momentum and energy due
to the projection of cross-field diffusion:

𝜕𝑛𝑛
𝜕𝑡

= . . .+ ∇ ·
(︀
b𝐷𝑛𝑛𝑛𝜕||𝑝𝑛

)︀
𝜕𝑝𝑛
𝜕𝑡

= . . .+ ∇ ·
(︀
b𝐷𝑛𝑝𝑛𝜕||𝑝𝑛

)︀
+

2

3
∇ ·
(︀
b𝜅𝑛𝜕||𝑇𝑛

)︀
𝜕

𝜕𝑡

(︀
𝑛𝑛𝑣||𝑛

)︀
= . . .+ ∇ ·

(︀
b𝐷𝑛𝑛𝑛𝑣||𝑛𝜕||𝑝𝑛

)︀
+ ∇ ·

(︀
b𝜂𝑛𝜕||𝑇𝑛

)︀
The diffusion coefficient is calculated as

𝐷𝑛 =

(︂
𝐵

𝐵𝑝𝑜𝑙

)︂2
𝑇𝑛
𝐴𝜈

where A is the atomic mass number; 𝜈 is the collision frequency. The factor 𝐵/𝐵𝑝𝑜𝑙 is the projection of the cross-field
direction on the parallel transport, and is the dneut input setting.

struct NeutralParallelDiffusion : public Component
Add effective diffusion of neutrals in a 1D system, by projecting cross-field diffusion onto parallel distance.

Note: This needs to be calculated after the collision frequency, so is a collective component. This therefore
applies diffusion to all neutral species i.e. those with no (or zero) charge

If diagnose = true then the following outputs are saved for each neutral species

• D<name>_Dpar Parallel diffusion coefficient e.g. Dhe_Dpar

• S<name>_Dpar Density source due to diffusion

• E<name>_Dpar Energy source due to diffusion

• F<name>_Dpar Momentum source due to diffusion

52 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

Public Functions

virtual void transform(Options &state) override
Inputs

• species

– <all neutrals>=””> # Applies to all neutral species

∗ AA

∗ collision_frequency

∗ density

∗ temperature

∗ pressure [optional, or density * temperature]

∗ velocity [optional]

∗ momentum [if velocity set]

Sets

• species

– <name>

∗ density_source

∗ energy_source

∗ momentum_source [if velocity set]

virtual void outputVars(Options &state) override
Save variables to the output.

7.10.3 collisions

For collisions between charged particles. In the following all quantities are in SI units except the temperatures: 𝑇 is in
eV, so 𝑒𝑇 has units of Joules.

Debye length 𝜆𝐷

𝜆𝐷 =

√︂
𝜖0𝑇𝑒
𝑛𝑒𝑒

Coulomb logarithm, from [NRL formulary 2019], adapted to SI units

• For thermal electron-electron collisions

ln𝜆𝑒𝑒 = 30.4 − 1

2
ln (𝑛𝑒) +

5

4
ln (𝑇𝑒) −

√︁
10−5 + (ln𝑇𝑒 − 2)

2
/16

where the coefficient (30.4) differs from the NRL value due to converting density from cgs to SI units (30.4 =
23.5 − 0.5 ln

(︀
10−6

)︀
).

• Electron-ion collisions

ln𝜆𝑒𝑖 =

⎧⎪⎪⎨⎪⎪⎩
10 if 𝑇𝑒 < 0.1eV or 𝑛𝑒 < 1010𝑚−3

30 − 1
2 ln (𝑛𝑒) − ln(𝑍) + 3

2 ln (𝑇𝑒) if 𝑇𝑖𝑚𝑒/𝑚𝑖 < 𝑇𝑒 < 10𝑍2

31 − 1
2 ln (𝑛𝑒) + ln (𝑇𝑒) if 𝑇𝑖𝑚𝑒/𝑚𝑖 < 10𝑍2 < 𝑇𝑒

23 − 1
2 ln (𝑛𝑖) + 3

2 ln (𝑇𝑖) − ln
(︀
𝑍2𝜇

)︀
if 𝑇𝑒 < 𝑇𝑖𝑚𝑒/𝑚𝑖

7.10. Collective quantities 53

Hermes-3 Documentation, Release 0.1.0

• Mixed ion-ion collisions

ln𝜆𝑖𝑖′ = 29.91 − 𝑙𝑛

[︃
𝑍𝑍 ′ (𝜇+ 𝜇′)

𝜇𝑇𝑖′ + 𝜇′𝑇𝑖

(︂
𝑛𝑖𝑍

2

𝑇𝑖
+
𝑛𝑖′𝑍

′2

𝑇𝑖′

)︂1/2
]︃

where like the other expressions the different constant is due to converting from cgs to SI units: 29.91 = 23 −
0.5 ln

(︀
10−6

)︀
.

The frequency of charged species a colliding with charged species b is

𝜈𝑎𝑏 =
1

3𝜋3/2𝜖20

𝑍2
𝑎𝑍

2
𝑏𝑛𝑏 ln Λ

(𝑣2𝑎 + 𝑣2𝑏)
3/2

(1 +𝑚𝑎/𝑚𝑏)

𝑚2
𝑎

Note that the cgs expression in Hinton is divided by (4𝜋𝜖0)
2 to get the expression in SI units. The thermal speeds in

this expression are defined as:

𝑣2𝑎 = 2𝑒𝑇𝑎/𝑚𝑎

Note that with this definition we recover the Braginskii expressions for e-i and i-i collision times.

For conservation of momentum, the collision frequencies 𝜈𝑎𝑏 and 𝜈𝑏𝑎 are related by:

𝑚𝑎𝑛𝑎𝜈𝑎𝑏 = 𝑚𝑏𝑛𝑏𝜈𝑏𝑎

Momentum exchange, force on species a due to collisions with species b:

𝐹𝑎𝑏 = 𝐶𝑚𝜈𝑎𝑏𝑚𝑎𝑛𝑎 (𝑢𝑏 − 𝑢𝑎)

Where the coefficient 𝐶𝑚 for parallel flows depends on the species: For most combinations of species this is set to 1,
but for electron-ion collisions the Braginskii coefficients are used: 𝐶𝑚 = 0.51 if ion charge 𝑍𝑖 = 1; 0.44 for 𝑍𝑖 = 2;
0.40 for 𝑍𝑖 = 3; and 0.38 is used for 𝑍𝑖 ≥ 4. Note that this coefficient should decline further with increasing ion
charge, tending to 0.29 as 𝑍𝑖 → ∞.

Frictional heating is included by default, but can be disabled by setting the frictional_heating option to false.
When enabled it adds a source of thermal energy corresponding to the resistive heating term:

𝑄𝑎𝑏,𝐹 =
𝑚𝑏

𝑚𝑎 +𝑚𝑏
(𝑢𝑏 − 𝑢𝑎)𝐹𝑎𝑏

This term has some important properties:

1. It is always positive: Collisions of two species with the same temperature never leads to cooling.

2. It is Galilean invariant: Shifting both species’ velocity by the same amount leaves 𝑄𝑎𝑏,𝐹 unchanged.

3. If both species have the same mass, the thermal energy change due to slowing down is shared equally between
them.

4. If one species is much heavier than the other, for example electron-ion collisions, the lighter species is preferen-
tially heated. This recovers e.g. Braginskii expressions for 𝑄𝑒𝑖 and 𝑄𝑖𝑒.

This can be derived by considering the exchange of energy 𝑊𝑎𝑏,𝐹 between two species at the same temperature but
different velocities. If the pressure is evolved then it contains a term that balances the change in kinetic energy due to
changes in velocity:

𝜕

𝜕𝑡
(𝑚𝑎𝑛𝑎𝑢𝑎) = . . .+ 𝐹𝑎𝑏

𝜕

𝜕𝑡

(︂
3

2
𝑝𝑎

)︂
= . . .− 𝐹𝑎𝑏𝑢𝑎 +𝑊𝑎𝑏,𝐹

54 Chapter 7. Components

https://farside.ph.utexas.edu/teaching/plasma/lectures1/node35.html

Hermes-3 Documentation, Release 0.1.0

For momentum and energy conservation we must have𝐹𝑎𝑏 = −𝐹𝑏𝑎 and𝑊𝑎𝑏,𝐹 = −𝑊𝑏𝑎,𝐹 . Comparing the above to the
Braginskii expression we see that for ion-electron collisions the term −𝐹𝑎𝑏𝑢𝑎+𝑊𝑎𝑏,𝐹 goes to zero, so𝑊𝑎𝑏,𝐹 ∼ 𝑢𝑎𝐹𝑎𝑏

for 𝑚𝑎 ≫ 𝑚𝑏. An expression that has all these desired properties is

𝑊𝑎𝑏,𝐹 =

(︂
𝑚𝑎𝑢𝑎 +𝑚𝑏𝑢𝑎
𝑚𝑎 +𝑚𝑏

)︂
𝐹𝑎𝑏

which is not Galilean invariant but when combined with the −𝐹𝑎𝑏𝑢𝑎 term gives a change in pressure that is invariant,
as required.

Thermal energy exchange, heat transferred to species 𝑎 from species 𝑏 due to temperature differences, is given by:

𝑄𝑎𝑏,𝑇 = 𝜈𝑎𝑏
3𝑛𝑎𝑚𝑎 (𝑇𝑏 − 𝑇𝑎)

𝑚𝑎 +𝑚𝑏

• Ion-neutral and electron-neutral collisions

The cross-section for elastic collisions between charged and neutral particles can vary significantly. Here for
simplicity we just take a value of 5 × 10−19𝑚2 from the NRL formulary.

• Neutral-neutral collisions

The cross-section is given by

𝜎 = 𝜋

(︂
𝑑1 + 𝑑2

2

)︂2

where 𝑑1 and 𝑑2 are the kinetic diameters of the two species. Typical values are [Wikipedia] for H2 2.89e-10m, He
2.60e-10m, Ne 2.75e-10m.

The mean relative velocity of the two species is

𝑣𝑟𝑒𝑙 =

√︂
𝑒𝑇1
𝑚1

+
𝑒𝑇2
𝑚2

and so the collision rate of species 1 on species 2 is:

𝜈12 = 𝑣𝑟𝑒𝑙𝑛2𝜎

The implementation is in Collisions:

struct Collisions : public Component
Calculates the collision rate of each species with all other species

Important: Be careful when including both ion_neutral collisions and reactions such as charge exchange, since
that may result in double counting. Similarly for electron_neutral collisions and ionization reactions.

Public Functions

Collisions(std::string name, Options &alloptions, Solver*)

The following boolean options under alloptions[name] control which collisions are calculated:

• electron_electron

• electron_ion

• electron_neutral

7.10. Collective quantities 55

https://farside.ph.utexas.edu/teaching/plasma/lectures/node35.html

Hermes-3 Documentation, Release 0.1.0

• ion_ion

• ion_neutral

• neutral_neutral

There are also switches for other terms:

• frictional_heating Include R dot v heating term as energy source? (includes Ohmic heating)

Parameters
alloptions – Settings, which should include:

• units

– eV

– inv_meters_cubed

– meters

– seconds

virtual void transform(Options &state) override
Modify the given simulation state All components must implement this function

7.10.4 thermal_force

This implements simple expressions for the thermal force. If the electron_ion option is true (which is the default),
then a momentum source is added to all ions:

𝐹𝑧 = 0.71𝑛𝑧𝑍
2∇||𝑇𝑒

where 𝑛𝑧 is the density of the ions of charge 𝑍. There is an equal and opposite force on the electrons.

If the ion_ion option is true (the default), then forces are calculated between light species (atomic mass < 4) and heavy
species (atomic mass > 10). If any combinations of ions are omitted, then a warning will be printed once. The force
on the heavy ion is:

𝐹𝑧 =𝛽∇||𝑇𝑖

𝛽 =
3
(︀
𝜇+ 5

√
2𝑍2

(︀
1.1𝜇5/2 − 0.35𝜇3/2

)︀
− 1
)︀

2.6 − 2𝜇+ 5.4𝜇2

𝜇 =𝑚𝑧/ (𝑚𝑧 +𝑚𝑖)

where subscripts 𝑧 refer to the heavy ion, and 𝑖 refers to the light ion. The force on the light ion fluid is equal and
opposite: 𝐹𝑖 = −𝐹𝑧 .

The implementation is in the ThermalForce class:

struct ThermalForce : public Component
Simple calculation of the thermal force

Important: This implements a quite crude approximation, which is intended for initial development and testing.
The expressions used are only valid for trace heavy ions and light main ion species, and would not be valid for
Helium impurities in a D-T plasma, for example. For this reason only collisions where one ion has an atomic
mass < 4, and the other an atomic mass > 10 are considered. Warning messages will be logged for species
combinations which are not calculated.

56 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

Options used:

• <name>

– electron_ion : bool Include electron-ion collisions?

– ion_ion : bool Include ion-ion elastic collisions?

Public Functions

virtual void transform(Options &state) override
Inputs

• species

– e [if electron_ion true]

∗ charge

∗ density

∗ temperature

– <species>

∗ charge [Checks, skips species if not set]

∗ AA

∗ temperature [If AA < 4 i.e. “light” species]

Outputs

• species

– e

∗ momentum_source [if electron_ion true]

– <species> [if AA < 4 (“light”) or AA > 10 (“heavy”)]

∗ momentum_source

7.10.5 recycling

This component calculates the flux of a species into a Y boundary, due to recycling of flow out of the boundary of
another species.

The boundary fluxes might be set by sheath boundary conditions, which potentially depend on the density and temper-
ature of all species. Recycling therefore can’t be calculated until all species boundary conditions have been set. It is
therefore expected that this component is a top-level component which comes after boundary conditions are set.

The recycling component has a species option, that is a list of species to recycle. For each of the species in that
list, recycling will look in the corresponding section for the options recycle_as, recycle_multiplier and
recycle_energy.

For example, recycling d+ ions into d atoms with a recycling fraction of 1. Each returning atom has an energy of 3.5eV:

7.10. Collective quantities 57

Hermes-3 Documentation, Release 0.1.0

[hermes]
components = d+, d, sheath_boundary, recycling

[recycling]
species = d+ # Comma-separated list of species to recycle

[d+]
recycle_as = d # Species to recycle as
recycle_multiplier = 1 # Recycling fraction
recycle_energy = 3.5 # Energy of recycled particles [eV]

struct Recycling : public Component
Convert fluxes of species at boundaries

Since this must be calculated after boundary fluxes (e.g. sheath), it is included as a top-level component

Public Functions

Recycling(std::string name, Options &alloptions, Solver*)
Inputs

• <name>

– species A comma-separated list of species to recycle

• <species>

– recycle_as The species to recycle into

– recycle_multiplier The recycled flux multiplier, between 0 and 1

– recycle_energy The energy of the recycled particles [eV]

virtual void transform(Options &state) override
Inputs

• species

– <species>

∗ density

∗ velocity

Outputs

• species

– <species>

∗ density_source

58 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

7.11 Atomic and molecular reactions

The formula for the reaction is used as the name of the component. This makes writing the input file harder, since the
formula must be in the exact same format (e.g. h + e and e + h won’t be recognised as being the same thing), but
makes reading and understanding the file easier.

To include a set of reactions, it is probably easiest to group them, and then include the group name in the components
list

[hermes]
components = ..., reactions

[reactions]
type = (

h + e -> h+ + 2e, # ionisation
h+ + e -> h, # Radiative + 3-body recombination
)

Note that brackets can be used to split the list of reactions over multiple lines, and trailing commas are ignored. Com-
ments can be used if needed to add explanation. The name of the section does not need to be reactions, and multiple
components could be created with different reaction sets. Be careful not to include the same reaction twice.

When reactions are added, all the species involved must be included, or an exception should be thrown.

Notes:

1. Charge exchange channel diagnostics: For two species a and b, the channel Fab_cx is a source of momentum
for species a due to charge exchange with species b. There are corresponding sinks for the products of the charge
exchange reaction which are not saved.

For example,reaction d + t+ -> d+ + t will save the following forces (momentum sources): - Fdt+_cx is a
source of momentum for deuterium atoms d and sink of momentum for deuterium ions d+. - Ft+d_cx is a source
of momentum for tritium ions t+ and sink of momentum for tritium atoms t

The reason for this convention is the existence of the inverse reactions: t + d+ -> t+ + d outputs diagnostics
Ftd+_cx and Fd+t_cx.

2. Reactions typically convert species from one to another, leading to a transfer of mass momentum and energy. For
a reaction converting species 𝑎 to species 𝑏 at rate 𝑅 (units of events per second per volume) we have transfers:

𝜕

𝜕𝑡
𝑛𝑎 = . . .−𝑅

𝜕

𝜕𝑡
𝑛𝑏 = . . .+𝑅

𝜕

𝜕𝑡
(𝑚𝑛𝑎𝑢𝑎) = . . .+ 𝐹𝑎𝑏

𝜕

𝜕𝑡
(𝑚𝑛𝑎𝑢𝑎) = . . .+ 𝐹𝑏𝑎

𝜕

𝜕𝑡

(︂
3

2
𝑝𝑎

)︂
= . . .− 𝐹𝑎𝑏𝑢𝑎 +𝑊𝑎𝑏 −

1

2
𝑚𝑅𝑢2𝑎

𝜕

𝜕𝑡

(︂
3

2
𝑝𝑏

)︂
= . . .− 𝐹𝑏𝑎𝑢𝑏 +𝑊𝑏𝑎 +

1

2
𝑚𝑅𝑢2𝑏

where both species have the same mass: 𝑚𝑎 = 𝑚𝑏 = 𝑚. In the pressure equations the −𝐹𝑎𝑏𝑢𝑎 comes
from splitting the kinetic and thermal energies; 𝑊𝑎𝑏 = −𝑊𝑏𝑎 is the energy transfer term that we need to
find; The final term balances the loss of kinetic energy at fixed momentum due to a particle source or sink.

7.11. Atomic and molecular reactions 59

Hermes-3 Documentation, Release 0.1.0

The momentum transfer 𝐹𝑎𝑏 = −𝐹𝑏𝑎 is the momentum carried by the converted ions: 𝐹𝑎𝑏 = −𝑚𝑅𝑢𝑎.
To find𝑊𝑎𝑏 we note that for 𝑝𝑎 = 0 the change in pressure must go to zero: −𝐹𝑎𝑏𝑢𝑎+𝑊𝑎𝑏− 1

2𝑚𝑅𝑢
2
𝑎 = 0.

𝑊𝑎𝑏 =𝐹𝑎𝑏𝑢𝑎 +
1

2
𝑚𝑅𝑢2𝑎

= −𝑚𝑅𝑢2𝑎 +
1

2
𝑚𝑅𝑢2𝑎

= − 1

2
𝑚𝑅𝑢2𝑎

Substituting into the above gives:

𝜕

𝜕𝑡

(︂
3

2
𝑝𝑏

)︂
= . . .− 𝐹𝑏𝑎𝑢𝑏 +𝑊𝑏𝑎 +

1

2
𝑚𝑅𝑢2𝑏

= . . .−𝑚𝑅𝑢𝑎𝑢𝑏 +
1

2
𝑚𝑅𝑢2𝑎 +

1

2
𝑚𝑅𝑢2𝑎

= . . .+
1

2
𝑚𝑅 (𝑢𝑎 − 𝑢𝑏)

2

This has the property that the change in pressure of both species is Galilean invariant. This transfer term
is included in the Amjuel reactions and hydrogen charge exchange.

7.11.1 Hydrogen

Multiple isotopes of hydrogen can be evolved, so to keep track of this the species labels h, d and t are all handled by
the same hydrogen atomic rates calculation. The following might therefore be used

[hermes]
components = d, t, reactions

[reactions]
type = (

d + e -> d+ + 2e, # Deuterium ionisation
t + e -> t+ + 2e, # Tritium ionisation
)

Reaction Description
h + e -> h+ + 2e Hydrogen ionisation (Amjuel 2.1.5)
d + e -> d+ + 2e Deuterium ionisation (Amjuel 2.1.5)
t + e -> t+ + 2e Tritium ionisation (Amjuel 2.1.5)
h + h+ -> h+ + h Hydrogen charge exchange
d + d+ -> d+ + d Deuterium charge exchange
t + t+ -> t+ + t Tritium charge exchange
h + d+ -> h+ + d Mixed hydrogen isotope CX
d + h+ -> d+ + h
h + t+ -> h+ + t
t + h+ -> t+ + h
d + t+ -> d+ + t
t + d+ -> t+ + d
h+ + e -> h Hydrogen recombination (Amjuel 2.1.8)
d+ + e -> d Deuterium recombination (Amjuel 2.1.8)
t+ + e -> t Tritium recombination (Amjuel 2.1.8)

60 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

The code to calculate the charge exchange rates is in hydrogen_charge_exchange.[ch]xx. This implements reac-
tion 3.1.8 from Amjuel (p43), scaled to different isotope masses and finite neutral particle temperatures by using the
effective temperature (Amjuel p43):

𝑇𝑒𝑓𝑓 =
𝑀

𝑀1
𝑇1 +

𝑀

𝑀2
𝑇2

The effective hydrogenic ionisation rates are calculated using Amjuel reaction 2.1.5, by D.Reiter, K.Sawada and
T.Fujimoto (2016). Effective recombination rates, which combine radiative and 3-body contributions, are calculated
using Amjuel reaction 2.1.8.

struct HydrogenChargeExchange : public Component
Hydrogen charge exchange total rate coefficient

p + H(1s) -> H(1s) + p

Reaction 3.1.8 from Amjuel (p43)

Scaled to different isotope masses and finite neutral particle temperatures by using the effective temperature
(Amjuel p43)

T_eff = (M/M_1)T_1 + (M/M_2)T_2

Important: If this is included then ion_neutral collisions should probably be disabled in the collisions com-
ponent, to avoid double-counting.

Subclassed by HydrogenChargeExchangeIsotope< Isotope1, Isotope2 >

Public Functions

inline HydrogenChargeExchange(std::string name, Options &alloptions, Solver*)

Parameters
alloptions – Settings, which should include:

• units

– eV

– inv_meters_cubed

– seconds

7.11.2 Helium

Reaction Description
he + e -> he+ + 2e He ionisation, unresolved metastables (Amjuel 2.3.9a)
he+ + e -> he He+ recombination, unresolved metastables (Amjuel 2.3.13a)

The implementation of these rates are in the AmjuelHeIonisation01 and AmjuelHeRecombination10 classes:

struct AmjuelHeIonisation01 : public AmjuelReaction
e + he -> he+ + 2e Amjuel reaction 2.3.9a, page 161 Not resolving metastables, only transporting ground state

7.11. Atomic and molecular reactions 61

Hermes-3 Documentation, Release 0.1.0

Public Functions

inline virtual void transform(Options &state) override
Modify the given simulation state All components must implement this function

struct AmjuelHeRecombination10 : public AmjuelReaction
e + he+ -> he Amjuel reaction 2.3.13a Not resolving metastables. Includes radiative + threebody + dielectronic.
Fujimoto Formulation II

Public Functions

inline virtual void transform(Options &state) override
Modify the given simulation state All components must implement this function

7.11.3 Neon

These rates are taken from ADAS (96): SCD and PLT are used for the ionisation rate and radiation energy loss; ACD
and PRB for the recombination rate and radiation energy loss; and CCD (89) for the charge exchange coupling to
hydrogen. The ionisation potential is also included as a source or sink of energy for the electrons.

Reaction Description
ne + e -> ne+ + 2e Neon ionisation
ne+ + e -> ne+2 + 2e
ne+2 + e -> ne+3 + 2e
ne+3 + e -> ne+4 + 2e
ne+4 + e -> ne+5 + 2e
ne+5 + e -> ne+6 + 2e
ne+6 + e -> ne+7 + 2e
ne+7 + e -> ne+8 + 2e
ne+8 + e -> ne+9 + 2e
ne+9 + e -> ne+10 + 2e
ne+ + e -> ne Neon recombination
ne+2 + e -> ne+
ne+3 + e -> ne+2
ne+4 + e -> ne+3
ne+5 + e -> ne+4
ne+6 + e -> ne+5
ne+7 + e -> ne+6
ne+8 + e -> ne+7
ne+9 + e -> ne+8
ne+10 + e -> ne+9
ne+ + h -> ne + h+ Charge exchange with hydrogen
ne+2 + h -> ne+ + h+
ne+3 + h -> ne+2 + h+
ne+4 + h -> ne+3 + h+
ne+5 + h -> ne+4 + h+
ne+6 + h -> ne+5 + h+
ne+7 + h -> ne+6 + h+
ne+8 + h -> ne+7 + h+

continues on next page

62 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

Table 7.1 – continued from previous page
Reaction Description
ne+9 + h -> ne+8 + h+
ne+10 + h -> ne+9 + h+
ne+ + d -> ne + d+ Charge exchange with deuterium
ne+2 + d -> ne+ + d+
ne+3 + d -> ne+2 + d+
ne+4 + d -> ne+3 + d+
ne+5 + d -> ne+4 + d+
ne+6 + d -> ne+5 + d+
ne+7 + d -> ne+6 + d+
ne+8 + d -> ne+7 + d+
ne+9 + d -> ne+8 + d+
ne+10 + d -> ne+9 + d+
ne+ + t -> ne + t+ Charge exchange with tritium
ne+2 + t -> ne+ + t+
ne+3 + t -> ne+2 + t+
ne+4 + t -> ne+3 + t+
ne+5 + t -> ne+4 + t+
ne+6 + t -> ne+5 + t+
ne+7 + t -> ne+6 + t+
ne+8 + t -> ne+7 + t+
ne+9 + t -> ne+8 + t+
ne+10 + t -> ne+9 + t+

The implementation of these rates is in ADASNeonIonisation, ADASNeonRecombination and ADASNeonCX template
classes:

template<int level>

struct ADASNeonIonisation : public OpenADAS
ADAS effective ionisation (ADF11)

Template Parameters
level – The ionisation level of the ion on the left of the reaction

Public Functions

inline virtual void transform(Options &state) override
Modify the given simulation state All components must implement this function

template<int level>

struct ADASNeonRecombination : public OpenADAS
ADAS effective recombination coefficients (ADF11)

Template Parameters
level – The ionisation level of the ion on the right of the reaction

7.11. Atomic and molecular reactions 63

Hermes-3 Documentation, Release 0.1.0

Public Functions

inline ADASNeonRecombination(std::string, Options &alloptions, Solver*)

Parameters
alloptions – The top-level options. Only uses the [“units”] subsection.

inline virtual void transform(Options &state) override
Modify the given simulation state All components must implement this function

template<int level, char Hisotope>

struct ADASNeonCX : public OpenADASChargeExchange

Template Parameters

• level – The ionisation level of the ion on the right of the reaction

• Hisotope – The hydrogen isotope (‘h’, ‘d’ or ‘t’)

Public Functions

inline ADASNeonCX(std::string, Options &alloptions, Solver*)

Parameters
alloptions – The top-level options. Only uses the [“units”] subsection.

inline virtual void transform(Options &state) override
Modify the given simulation state All components must implement this function

7.11.4 Fixed fraction radiation

These components produce volumetric electron energy losses, but don’t otherwise modify the plasma solution: Their
charge and mass density are not calculated, and there are no interactions with other species or boundary conditions.

The fixed_fraction_carbon component calculates radiation due to carbon in coronal equilibrium, using a simple
formula from I.H.Hutchinson Nucl. Fusion 34 (10) 1337 - 1348 (1994):

𝐿 (𝑇𝑒) = 2 × 10−31 (𝑇𝑒/10)
3

1 + (𝑇𝑒/10)
4.5

which has units of 𝑊𝑚3 with 𝑇𝑒 in eV.

To use this component you can just add it to the list of components and then configure the impurity fraction:

[hermes]
components = ..., fixed_fraction_carbon, ...

[fixed_fraction_carbon]
fraction = 0.05 # 5% of electron density
diagnose = true # Saves Rfixed_fraction_carbon to output

Or to customise the name of the radiation output diagnostic a section can be defined like this:

64 Chapter 7. Components

https://doi.org/10.1088/0029-5515/34/10/I04

Hermes-3 Documentation, Release 0.1.0

[hermes]
components = ..., c, ...

[c]
type = fixed_fraction_carbon
fraction = 0.05 # 5% of electron density
diagnose = true # Saves Rc (R + section name)

The fixed_fraction_nitrogen component works in the same way, calculating nitrogen radiation using a formula
from Bruce Lipschultz et al 2016 Nucl. Fusion 56 056007:

𝐿 (𝑇𝑒) =

{︃
5.9 × 10−34

√
𝑇𝑒−1(80−𝑇𝑒)

1+3.1×10−3(𝑇𝑒−1)2
If 1 < 𝑇𝑒 < 80eV

0 Otherwise

The fixed_fraction_neon component use a piecewise polynomial fit to the neon cooling curve (Ryoko 2020 Nov):

𝐿 (𝑇) =

⎧⎪⎪⎨⎪⎪⎩
∑︀5

𝑖=0 𝑎𝑖𝑇
𝑖
𝑒 If 3 ≤ 𝑇𝑒 < 100eV

7 × 10−35 (𝑇𝑒 − 2) + 10−35 If 2 ≤ 𝑇𝑒 < 3eV
10−35 (𝑇𝑒 − 1) If 1 < 𝑇𝑒 < 2eV

0 Otherwise

where the coefficients of the polynomial fit are 𝑎0 = −3.2798×10−34, 𝑎1 = −3.4151×10−34, 𝑎2 = 1.7347×10−34,
𝑎3 = −5.119 × 10−36, 𝑎4 = 5.4824 × 10−38, 𝑎5 = −2.0385 × 10−40.

The fixed_fraction_argon components uses a piecewise polynomial fit to the argon cooling curve (Ryoko 2020
Nov):

𝐿 (𝑇) =

⎧⎨⎩
∑︀9

𝑖=0 𝑏𝑖𝑇
𝑖
𝑒 If 1.5 ≤ 𝑇𝑒 < 100eV

5 × 10−35 (𝑇𝑒 − 1) If 1 ≤ 𝑇𝑒 < 1.5eV
0 Otherwise

where polynomial coefficients 𝑏0 . . . 𝑏9 are −9.9412𝑒− 34, 4.9864𝑒− 34, 1.9958𝑒− 34, 8.6011𝑒− 35, −8.341𝑒− 36,
3.2559𝑒− 37, −6.9642𝑒− 39, 8.8636𝑒− 41, −6.7148𝑒− 43, 2.8025𝑒− 45, −4.9692𝑒− 48.

7.12 Electromagnetic fields

These are components which calculate the electric and/or magnetic fields.

7.12.1 vorticity

Evolves a vorticity equation, and at each call to transform() uses a matrix inversion to calculate potential from vorticity.

In this component the Boussinesq approximation is made, so the vorticity equation solved is

∇ ·
(︂
𝐴𝑛

𝐵2
∇⊥𝜑

)︂
+∇ ·

(︃∑︁
𝑖

𝐴𝑖

𝑍𝑖𝐵2
∇⊥𝑝𝑖

)︃
⏟ ⏞
ifdiamagnetic_polarisation

= Ω

Where the sum is over species, 𝐴 is the average ion atomic number, and 𝑛 is the normalisation density (i.e. goes to 1 in
the normalised equations). The ion diamagnetic flow terms in this Boussinesq approximation can be written in terms
of an effective ion pressure 𝑝:

𝑝 ≡
∑︁
𝑖

𝐴𝑖

𝐴𝑍𝑖

𝑝𝑖

7.12. Electromagnetic fields 65

https://doi.org/10.1088/0029-5515/56/5/056007

Hermes-3 Documentation, Release 0.1.0

as

∇ ·
[︂
𝐴𝑛

𝐵2
∇⊥

(︂
𝜑+

𝑝

𝑛

)︂]︂
= Ω

Note that if diamagnetic_polarisation = false then the ion pressure terms are removed from the vorticity, and
also from other ion pressure terms coming from the polarisation current (i.e. 𝑝→ 0.

This is a simplified version of the full vorticity definition which is:

∇ ·

(︃∑︁
𝑖

𝐴𝑖𝑛𝑖
𝐵2

∇⊥𝜑+
∑︁
𝑖

𝐴𝑖

𝑍𝑖𝐵2
∇⊥𝑝𝑖

)︃
= Ω

and is derived by replacing ∑︁
𝑖

𝐴𝑖𝑛𝑖 → 𝐴𝑛

In the case of multiple species, this Boussinesq approximation means that the ion diamagnetic flow terms

The vorticity equation that is integrated in time is

𝜕Ω

𝜕𝑡
=∇ ·

(︃
b
∑︁
𝑠

𝑍𝑠𝑛𝑠𝑉||𝑠

)︃

+ ∇ ·

(︃
∇× b

𝐵

∑︁
𝑠

𝑝𝑠

)︃
⏟ ⏞

if diamagnetic

+ ∇ · Jexb⏟ ⏞
ifexb_advection

+ ∇ · (b𝐽𝑒𝑥𝑡𝑟𝑎)

The nonlinearity ∇ · Jexb is part of the divergence of polarisation current. In its simplified form when
exb_advection_simplified = true, this is the 𝐸 ×𝐵 advection of vorticity:

∇ · Jexb = −∇ · (ΩV𝐸×𝐵)

When exb_advection_simplified = false then the more complete (Boussinesq approximation) form is used:

∇ · Jexb = −∇ ·
[︂
𝐴

2𝐵2
∇⊥ (V𝐸×𝐵 · ∇𝑝) +

Ω

2
V𝐸×𝐵 +

𝐴𝑛

2𝐵2
∇2

⊥𝜑

(︂
V𝐸×𝐵 +

b

𝐵
×∇𝑝

)︂]︂
The form of the vorticity equation is based on Simakov & Catto (corrected in erratum 2004), in the Boussinesq limit
and with the first term modified to conserve energy. In the limit of zero ion pressure and constant 𝐵 it reduces to the
simplified form.

struct Vorticity : public Component
Evolve electron density in time

Public Functions

Vorticity(std::string name, Options &options, Solver *solver)
Options

• <name>

66 Chapter 7. Components

https://doi.org/10.1063/1.1623492
https://doi.org/10.1063/1.1703527

Hermes-3 Documentation, Release 0.1.0

– average_atomic_mass: float, default 2.0 Weighted average ion atomic mass for polarisation cur-
rent

– bndry_flux: bool, default true Allow flows through radial (X) boundaries?

– collisional_friction: bool, default false Damp vorticity based on mass-weighted collision fre-
quency?

– diagnose: bool, false Output additional diagnostics?

– diamagnetic: bool, default true Include diamagnetic current, using curvature vector?

– diamagnetic_polarisation: bool, default true Include ion diamagnetic drift in polarisation cur-
rent?

– exb_advection: bool, default true Include ExB advection (nonlinear term)?

– hyper_z: float, default -1.0 Hyper-viscosity in Z. < 0 means off

– laplacian: subsection Options for the Laplacian phi solver

– phi_boundary_relax: bool, default false Relax radial phi boundaries towards zero-gradient?

– phi_boundary_timescale: float, 1e-4 Timescale for phi boundary relaxation [seconds]

– phi_dissipation: bool, default true Parallel dissipation of potential (Recommended)

– poloidal_flows: bool, default true Include poloidal ExB flow?

– sheath_boundary: bool, default false If phi_boundary_relax is false, set the radial boundary to
the sheath potential?

– split_n0: bool, default false Split phi into n=0 and n!=0 components?

– viscosity: Field2D, default 0.0 Kinematic viscosity [m^2/s]

– vort_dissipation: bool, default false Parallel dissipation of vorticity?

virtual void transform(Options &state) override
Optional inputs

• species

– pressure and charge => Calculates diamagnetic terms [if diamagnetic=true]

– pressure, charge and mass => Calculates polarisation current terms [if diamag-
netic_polarisation=true]

Sets in the state

• species

– [if has pressure and charge]

∗ energy_source

• fields

– vorticity

– phi Electrostatic potential

– DivJdia Divergence of diamagnetic current [if diamagnetic=true]

Note: Diamagnetic current calculated here, but could be moved to a component with the diamagnetic drift
advection terms

7.12. Electromagnetic fields 67

Hermes-3 Documentation, Release 0.1.0

virtual void finally(const Options &state) override
Optional inputs

• fields

– DivJextra Divergence of current, including parallel current Not including diamagnetic or polar-
isation currents

virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

inline virtual void restartVars(Options &state) override
Add extra fields to restart files.

7.12.2 relax_potential

This component evolves a vorticity equation, similar to the vorticity component. Rather than inverting an elliptic
equation at every timestep, this component evolves the potential in time as a diffusion equation.

struct RelaxPotential : public Component
Evolve vorticity and potential in time.

Uses a relaxation method for the potential, which is valid for steady state, but not for timescales shorter than the
relaxation timescale.

Public Functions

RelaxPotential(std::string name, Options &options, Solver *solver)
Options

• <name>

– diamagnetic

– diamagnetic_polarisation

– average_atomic_mass

– bndry_flux

– poloidal_flows

– split_n0

– laplacian Options for the Laplacian phi solver

virtual void transform(Options &state) override
Optional inputs

• species

– pressure and charge => Calculates diamagnetic terms [if diamagnetic=true]

– pressure, charge and mass => Calculates polarisation current terms [if diamag-
netic_polarisation=true]

Sets in the state

68 Chapter 7. Components

Hermes-3 Documentation, Release 0.1.0

• species

– [if has pressure and charge]

∗ energy_source

• fields

– vorticity

– phi Electrostatic potential

– DivJdia Divergence of diamagnetic current [if diamagnetic=true]

Note: Diamagnetic current calculated here, but could be moved to a component with the diamagnetic drift
advection terms

virtual void finally(const Options &state) override
Optional inputs

• fields

– DivJextra Divergence of current, including parallel current Not including diamagnetic or polar-
isation currents

virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

7.12.3 electromagnetic

This component modifies the definition of momentum of all species, to include the contribution from the electromag-
netic potential 𝐴||.

Assumes that “momentum” 𝑝𝑠 calculated for all species 𝑠 is

𝑝𝑠 = 𝑚𝑠𝑛𝑠𝑣||𝑠 + 𝑍𝑠𝑒𝑛𝑠𝐴||

which arises once the electromagnetic contribution to the force on each species is included in the momentum equation.
This is normalised so that in dimensionless quantities

𝑝𝑠 = 𝐴𝑛𝑣|| + 𝑍𝑛𝐴||

where 𝐴 and 𝑍 are the atomic number and charge of the species.

The current density 𝑗|| in SI units is

𝑗|| = − 1

𝜇0
∇2

⊥𝐴||

which when normalised in Bohm units becomes

𝑗|| = − 1

𝛽𝑒𝑚
∇2

⊥𝐴||

where 𝛽𝑒𝑚 is a normalisation parameter which is half the plasma electron beta as normally defined:

𝛽𝑒𝑚 =
𝜇0𝑒𝑛𝑇

𝐵
2

To convert the species momenta into a current, we take the sum of 𝑝𝑠𝑍𝑠𝑒/𝑚𝑠. In terms of normalised quantities this
gives:

− 1

𝛽𝑒𝑚
∇2

⊥𝐴|| +
∑︁
𝑠

𝑍2𝑛𝑠
𝐴

𝐴|| =
∑︁
𝑠

𝑍

𝐴
𝑝𝑠

7.12. Electromagnetic fields 69

Hermes-3 Documentation, Release 0.1.0

struct Electromagnetic : public Component
Electromagnetic potential A||

Reinterprets all species’ parallel momentum as a combination of a parallel flow and a magnetic contribution, i.e.
canonical momentum.

m n v_{||} + Z e n A_{||}

Changes the “momentum” of each species so that after this component the momentuum of each species is just

m n v_{||}

This component should be run after all species have set their momentum, but before the momentum is used e.g
to set boundary conditions.

Calculates the electromagnetic potential A_{||} using

Laplace(Apar) - alpha_em * Apar = -Ajpar

By default outputs Apar every timestep. When diagnose = true in also saves alpha_em and Ajpar.

Public Functions

Electromagnetic(std::string name, Options &options, Solver *solver)
Options

• units

• <name>

– diagnose Saves Ajpar and alpha_em time-dependent values

virtual void transform(Options &state) override
Inputs

• species

– <..> All species with charge and parallel momentum

∗ charge

∗ momentum

∗ density

∗ AA

Sets

• species

– <..> All species with charge and parallel momentum

∗ momentum (modifies) to m n v||

∗ velocity (modifies) to v||

• fields

– Apar Electromagnetic potential

virtual void outputVars(Options &state) override
Add extra fields for output, or set attributes e.g docstrings.

70 Chapter 7. Components

CHAPTER

EIGHT

NUMERICAL METHODS

8.1 Parallel dynamics

Dynamics parallel to the magnetic field are solved using a 2nd-order slope-limiter method. For any number of fluids
we solve the number density 𝑛, momentum along the magnetic field, 𝑚𝑛𝑣||, and either pressure 𝑝 or energy ℰ . Here
𝑚 is the particle mass, so that 𝑚𝑛 is the mass density. 𝑣|| is the component of the flow velocity in the direction of the
magnetic field, and is aligned with one of the mesh coordinate directions. All quantities are cell centered.

Cell edge values are by default reconstructed using a MinMod method (other limiters are available, including 1st-order
upwind, Monotonized Central, and Superbee). If 𝑓𝑖 is the value of field 𝑓 at the center of cell 𝑖, then using MinMod
slope limiter the gradient 𝑔𝑖 inside the cell is:

𝑔𝑖 =

⎧⎨⎩ 0 if (𝑓𝑖+1 − 𝑓𝑖) (𝑓𝑖 − 𝑓𝑖−1) < 0
𝑓𝑖+1 − 𝑓𝑖 if |𝑓𝑖+1 − 𝑓𝑖| < |𝑓𝑖 − 𝑓𝑖−1|
𝑓𝑖 − 𝑓𝑖−1 Otherwise

The values at the left and right of cell 𝑖 are:

𝑓𝑖,𝑅 = 𝑓𝑖 + 𝑔𝑖/2

𝑓𝑖,𝐿 = 𝑓𝑖 − 𝑔𝑖/2(8.1)

This same reconstruction is performed for 𝑛, 𝑣|| and 𝑝 (or ℰ). The flux Γ𝑖+1/2 between cell 𝑖 and 𝑖+ 1 is:

Γ𝑓,𝑖+1/2 =
1

2

(︀
𝑓𝑖,𝑅𝑣||𝑖,𝑅 + 𝑓𝑖+1,𝐿𝑣||𝑖+1,𝐿

)︀
+
𝑎𝑚𝑎𝑥,𝑖+1/2

2
(𝑓𝑖,𝑅 − 𝑓𝑖+1,𝐿)

This includes a Lax flux term that penalises jumps across cell edges, and depends on the maximum local wave speed,
𝑎𝑚𝑎𝑥. Momentum is not reconstructed at cell edges; Instead the momentum flux is calculated from the cell edge
densities and velocities:

Γ𝑛𝑣,𝑖+1/2 =
1

2

(︁
𝑛𝑖,𝑅𝑣

2
||𝑖,𝑅 + 𝑛𝑖+1,𝐿𝑣

2
||𝑖+1,𝐿

)︁
+
𝑎𝑚𝑎𝑥,𝑖+1/2

2

(︀
𝑛𝑖,𝑅𝑣||𝑖,𝑅 − 𝑛𝑖+1,𝐿𝑣||𝑖+1,𝑅

)︀
The wave speeds, and so 𝑎𝑚𝑎𝑥, depend on the model being solved, so can be customised to e.g include or exclude
Alfven waves or electron thermal speed. For simple neutral fluid simulations it is:

𝑎𝑚𝑎𝑥,𝑖+1/2 = max

(︂⃒⃒
𝑣||𝑖
⃒⃒
,
⃒⃒
𝑣||𝑖+1

⃒⃒
,

√︂
𝛾𝑝𝑖
𝑚𝑛𝑖

,

√︂
𝛾𝑝𝑖+1

𝑚𝑛𝑖+1

)︂
The divergence of the flux, and so the rate of change of 𝑓 in cell 𝑖, depends on the cell area perpendicular to the flow,
𝐴𝑖, and cell volume 𝑉𝑖:

∇ ·
(︀
b𝑓𝑣||

)︀
𝑖

=
1

𝑉𝑖

[︂
𝐴𝑖 +𝐴𝑖+1

2
Γ𝑓,𝑖+1/2 −

𝐴𝑖−1 +𝐴𝑖

2
Γ𝑓,𝑖−1/2

]︂

71

Hermes-3 Documentation, Release 0.1.0

8.1.1 Boundaries

At boundaries along the magnetic field the flow of particles and energy are set by e.g. Bohm sheath boundary conditions
or no-flow conditions. To ensure that the flux of particles is consistent with the boundary condition imposed at cell
boundaries, fluxes of density 𝑛 and also 𝑝 or ℰ are set to the simple mid-point flux:

Γ𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
𝑓,𝑖+1/2 = 𝑓𝑖+1/2𝑣||𝑖+1/2

where 𝑓𝑖+1/2 = 1
2 (𝑓𝑖 + 𝑓𝑖+1) and 𝑣||𝑖+1/2 = 1

2

(︀
𝑣||𝑖 + 𝑣||𝑖+1

)︀
are the mid-point averages where boundary conditions

are imposed. It has been found necessary to include dissipation in the momentum flux at the boundary, to suppress
numerical overshoots due to the narrow boundary layers that can form:

Γ𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
𝑛𝑣,𝑖+1/2 = 𝑛𝑖,𝑅𝑣||𝑖,𝑅𝑣||𝑖+1/2 + 𝑎𝑚𝑎𝑥

[︀
𝑛𝑖,𝑅𝑣||𝑖,𝑅 − 𝑛𝑖+1/2𝑣||𝑖+1/2

]︀
where 𝑛𝑖+1/2 = 1

2 (𝑛𝑖 + 𝑛𝑖+1).

72 Chapter 8. Numerical methods

INDEX

A
ADASNeonCX (C++ struct), 64
ADASNeonCX::ADASNeonCX (C++ function), 64
ADASNeonCX::transform (C++ function), 64
ADASNeonIonisation (C++ struct), 63
ADASNeonIonisation::transform (C++ function), 63
ADASNeonRecombination (C++ struct), 63
ADASNeonRecombination::ADASNeonRecombination

(C++ function), 64
ADASNeonRecombination::transform (C++ func-

tion), 64
AmjuelHeIonisation01 (C++ struct), 61
AmjuelHeIonisation01::transform (C++ function),

62
AmjuelHeRecombination10 (C++ struct), 62
AmjuelHeRecombination10::transform (C++ func-

tion), 62

C
Collisions (C++ struct), 55
Collisions::Collisions (C++ function), 55
Collisions::transform (C++ function), 56
Component (C++ struct), 25
Component::create (C++ function), 25
Component::finally (C++ function), 25
Component::outputVars (C++ function), 25
Component::precon (C++ function), 25
Component::restartVars (C++ function), 25
Component::transform (C++ function), 25
ComponentScheduler (C++ class), 27
ComponentScheduler::create (C++ function), 28
ComponentScheduler::outputVars (C++ function),

27
ComponentScheduler::precon (C++ function), 27
ComponentScheduler::restartVars (C++ function),

27
ComponentScheduler::transform (C++ function), 27

D
DiamagneticDrift (C++ struct), 47
DiamagneticDrift::transform (C++ function), 47

E
Electromagnetic (C++ struct), 69
Electromagnetic::Electromagnetic (C++ func-

tion), 70
Electromagnetic::outputVars (C++ function), 70
Electromagnetic::transform (C++ function), 70
ElectronForceBalance (C++ struct), 42
ElectronForceBalance::transform (C++ function),

42
ElectronViscosity (C++ struct), 43
ElectronViscosity::ElectronViscosity (C++

function), 43
ElectronViscosity::outputVars (C++ function), 43
ElectronViscosity::transform (C++ function), 43
EvolveDensity (C++ struct), 30
EvolveDensity::EvolveDensity (C++ function), 30
EvolveDensity::finally (C++ function), 31
EvolveDensity::outputVars (C++ function), 31
EvolveDensity::transform (C++ function), 31
EvolveEnergy (C++ struct), 37
EvolveEnergy::EvolveEnergy (C++ function), 37
EvolveEnergy::finally (C++ function), 38
EvolveEnergy::outputVars (C++ function), 38
EvolveEnergy::precon (C++ function), 38
EvolveEnergy::transform (C++ function), 38
EvolveMomentum (C++ struct), 40
EvolveMomentum::finally (C++ function), 41
EvolveMomentum::outputVars (C++ function), 41
EvolveMomentum::transform (C++ function), 41
EvolvePressure (C++ struct), 35
EvolvePressure::EvolvePressure (C++ function),

36
EvolvePressure::finally (C++ function), 36
EvolvePressure::outputVars (C++ function), 37
EvolvePressure::precon (C++ function), 37
EvolvePressure::transform (C++ function), 36

F
FixedDensity (C++ struct), 29
FixedDensity::FixedDensity (C++ function), 29
FixedDensity::outputVars (C++ function), 30
FixedDensity::transform (C++ function), 29

73

Hermes-3 Documentation, Release 0.1.0

FixedTemperature (C++ struct), 34
FixedTemperature::FixedTemperature (C++ func-

tion), 34
FixedTemperature::outputVars (C++ function), 35
FixedTemperature::transform (C++ function), 34
FixedVelocity (C++ struct), 40
FixedVelocity::outputVars (C++ function), 40
FixedVelocity::transform (C++ function), 40

H
HydrogenChargeExchange (C++ struct), 61
HydrogenChargeExchange::HydrogenChargeExchange

(C++ function), 61

I
IonViscosity (C++ struct), 45
IonViscosity::IonViscosity (C++ function), 45
IonViscosity::outputVars (C++ function), 46
IonViscosity::transform (C++ function), 45
Isothermal (C++ struct), 33
Isothermal::outputVars (C++ function), 34
Isothermal::transform (C++ function), 34

N
NeutralBoundary (C++ struct), 51
NeutralBoundary::transform (C++ function), 51
NeutralParallelDiffusion (C++ struct), 52
NeutralParallelDiffusion::outputVars (C++

function), 53
NeutralParallelDiffusion::transform (C++

function), 53
NoFlowBoundary (C++ struct), 50
NoFlowBoundary::transform (C++ function), 50

P
PolarisationDrift (C++ struct), 48
PolarisationDrift::outputVars (C++ function), 49
PolarisationDrift::transform (C++ function), 48

R
Recycling (C++ struct), 58
Recycling::Recycling (C++ function), 58
Recycling::transform (C++ function), 58
RelaxPotential (C++ struct), 68
RelaxPotential::finally (C++ function), 69
RelaxPotential::outputVars (C++ function), 69
RelaxPotential::RelaxPotential (C++ function),

68
RelaxPotential::transform (C++ function), 68

S
SimpleConduction (C++ struct), 46
SimpleConduction::transform (C++ function), 47

SNBConduction (C++ struct), 39
SNBConduction::outputVars (C++ function), 40
SNBConduction::SNBConduction (C++ function), 39
SNBConduction::transform (C++ function), 39

T
ThermalForce (C++ struct), 56
ThermalForce::transform (C++ function), 57

U
UpstreamDensityFeedback (C++ struct), 32
UpstreamDensityFeedback::outputVars (C++

function), 33
UpstreamDensityFeedback::restartVars (C++

function), 33
UpstreamDensityFeedback::transform (C++ func-

tion), 33
UpstreamDensityFeedback::UpstreamDensityFeedback

(C++ function), 32

V
Vorticity (C++ struct), 66
Vorticity::finally (C++ function), 67
Vorticity::outputVars (C++ function), 68
Vorticity::restartVars (C++ function), 68
Vorticity::transform (C++ function), 67
Vorticity::Vorticity (C++ function), 66

74 Index

	Introduction
	Getting started
	Installing
	Building with PETSC
	Numerical methods

	Examples
	1D flux-tube
	1D periodic domain, Te and Ti
	1D Scrape-off Layer (SOL)

	2D drift-plane
	Blob2d
	Blob2D-Te-Ti
	2D-drift-plane-turbulence-te-ti

	2D axisymmetric tokamak
	heat-transport
	recycling-dthene

	Tests
	1D fluid (MMS)
	Sod shock
	Toro test 1
	Toro test 2
	Toro test 3
	Toro test 4
	Toro test 5

	Tokamak axisymmetric transport
	Finding steady state solutions
	Backward Euler solver
	cvode solver
	Mesh interpolation

	Post-processing

	Code structure
	Simulation state
	Components
	Component scheduler

	Components
	Species density
	fixed_density
	evolve_density
	upstream_density_feedback
	fixed_fraction_ions
	quasineutral

	Species pressure and temperature
	isothermal
	fixed_temperature
	evolve_pressure
	evolve_energy
	SNB nonlocal heat flux

	Species parallel dynamics
	fixed_velocity
	evolve_momentum
	zero_current
	electron_force_balance

	electron_viscosity
	ion_viscosity
	simple_conduction
	Drifts
	diamagnetic_drift
	polarisation_drift

	Neutral gas models
	Boundary conditions
	noflow_boundary
	neutral_boundary

	Collective quantities
	sound_speed
	neutral_parallel_diffusion
	collisions
	thermal_force
	recycling

	Atomic and molecular reactions
	Hydrogen
	Helium
	Neon
	Fixed fraction radiation

	Electromagnetic fields
	vorticity
	relax_potential
	electromagnetic

	Numerical methods
	Parallel dynamics
	Boundaries

	Index

